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Abstract

Based on the concept of intrinsic elastic moduli an overview of modulus–porosity relations is given, which includes exponential and
power-law expressions as well as the Hasselman relation and a relation recently proposed by Pabst and Gregorová. The formal structure
of these relations is compared and the physical meaning of the parameters discussed. It is recalled that certain popular relations violate the
Hashin–Shtrikman upper bounds and are, therefore, useless (Spriggs relation, Ishai–Cohen relation). Coble–Kingery relations are recalled in
their correct form and an improved version of the Gibson–Ashby relation for the shear modulus is proposed. Selected relations are applied to
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escribe the porosity dependence of the relative tensile moduli of alumina, zirconia, silicon nitride and silicon carbide prepared
tarch as a pore-forming agent. Porous ceramics with this type of (matrix-inclusion-based) microstructure are shown to follow app
modified exponential relation and can be fitted by a master curve with critical porosity 68.4%.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

Elastic properties play a key role in determining the me-
hanical behavior of ceramic materials, including glasses,
nd, not surprisingly, an immense literature is available on

he porosity dependence of elastic moduli. It is not the pur-
ose of this contribution to review the many important the-
retical and experimental papers that have been published

n this field. On the contrary, here it is our aim to provide a
resh view on this old theme, as far as possible unbiased by
radition. We investigate the formal mathematical structure
f commonly used, less commonly used and recently intro-
uced modulus–porosity relations and present a hopefully
ational classification and a more or less exhaustive overview
f these, at least for approximately isometric pores.

We will discuss commonly encountered problems and
isunderstandings with respect to modulus–porosity rela-

ions in general and will demonstrate—with recently pub-
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lished data on porous alumina, zirconia, silicon carbide
silicon nitride—the usefulness of some of these relat
for the description (fitting) of experimentally measured d
as well as for the prediction (estimate) of elastic modu
porous ceramics based on an elementary information o
type of microstructure.

Although the present text is to a large degree s
contained, we assume the reader to be familiar with the
theory of linear elasticity1,2 and with the fundamentals
micromechanics.3–6

2. Elastic moduli from the viewpoint of rational
mechanics

The elastic behavior of brittle materials can be descr
within the framework of linear elasticity theory. In the cas
small deformations (i.e. invoking geometrical linearizati
Hooke’s law for anisotropic elastic solids (i.e. the physic
linearized constitutive equation) can be written in direct
955-2219/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jeurceramsoc.2005.01.041
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sor notation as

T = CE, (1)

whereT is the Cauchy stress tensor (a symmetric second-
order tensor),C the stiffness tensor (a fully symmetric fourth-
order tensor, also called elasticity tensor or tensor of elastic
constants) andE the so-called small strain tensor (a symmet-
ric second-order tensor).1,2,7,8

In the case of isotropic materials Hooke’s law, Eq.(1)
adopts the form

T = λ(trE)1 + 2µE, (2)

(Cauchy–Hooke law), where the elastic constants (elastic
moduli) λ andµ are called Laḿe constants (or Laḿe mod-
uli, units [GPa]), tr denotes the trace of a tensor and1 is the
second-order unit tensor.

In terms of the tensile modulusE and the Poisson ratioν
the Cauchy–Hooke law for isotropic materials can be written
as

T = E

(1 + ν)

[
E + ν

(1 − 2ν)
(trE)1

]
(3)

From Eq.(3) it is evident that for the Poisson ratioν the values
0.5 and−1 are not allowed. Actually, as a consequence of
the second law of thermodynamics the following inequality
m 1,6
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(i.e. an averaged Hooke’s law for heterogeneous materials),
where the angular brackets denote volume averages of the
Cauchy stress tensor and the small strain tensor, respectively.6

In principle, the effective stiffness tensor can be predicted
exactly when the properties of the constituent phases (i.e. for
porous materials essentially those of the matrix or skeleton
phase, since the void phase usually exhibits more or less “zero
properties”) and all details of the microstructure are known.
In practice this is of course not the case.

Micromechanics provides theoretical concepts for quanti-
fying microstructural information to an arbitrary degree of
precision and including it into the description of a mate-
rial in the form of so-called correlation functions.3,4,6 The
lowest-order microstructural information (one-point corre-
lation function) concerns only the volume fractions of the
phases. Higher-order microstructural information (two-point,
three-point, in general multi-point correlation functions) can
account for size, shape and orientation features, including
the corresponding distributions.3,6 However, for real mate-
rials higher-order microstructural information is accessible
only via tomographic techniques (direct 3D information) or,
although to a limited degree only, by image analysis of planar
sections (partial 3D information indirectly inferred from 2D
information). Computer simulations, of course, are a power-
ful tool to analyze model microstructures, cf., e.g. Ref. 10
and the extensive work of Torquato and his coworkers cited
i

lves
t
M s
G e-
n ich
a
s
m ase
v m-
p the
f

M

w
c .
T mean
(

M

w s.
T nd
(
r s
t
O two
v nota-
t nd
p

ust hold for isotropic materials:

1 < ν < 0.5. (4)

lthough in some of the older literature the opinion has
ailed that (according to some alleged “experience with
aterials”) the Poisson ratio should always be positive

sotropic materials (i.e. 0 <ν < 0.5), it is well known toda
hat isotropic materials with negative Poisson ratio, so-c
auxetic materials”, do exist and can be designed and
uced, cf. Refs. 4, 6, 9 and the literature cited therein. T
aterials show the contra-intuitive behavior, that when

ended in one direction, they extend in all perpendicular d
ions. Of course, most ceramic materials, including glas
xhibit Poisson ratios in the range 0.1–0.4 and for many
oses the approximate value of 0.2 or 0.3 will be a reaso
stimate in the absence of more precise information. N

heless, newer research in ceramic science (e.g. Ref. 10
he possibility of negative Poisson ratios into account.

. Effective elastic moduli from the viewpoint of
icromechanics

Porous materials can be considered as a special ca
ultiphase mixtures, composites or, more generally,

erials with microstructure (the subject of micromech
cs or composite theory). In micromechanics or compo
heory3–6 an effective stiffness tensorCe can be defined vi
he linear constitutive equation

T〉 = Ce〈E〉 (5)
f

n Ref. 6.
For the remaining part of this paper we confine ourse

o isotropic materials with effective elastic moduliM (where
stands for the effective tensile modulusE, shear modulu
or bulk modulusK, respectively, and the subscript “e”, d

oting “effective”, has been omitted for convenience) wh
re in general temperature-dependent, c.f. Refs.11, 12. We
uppose them to be functions of the phase moduliMi and
icrostructural information of lowest-order only, i.e. ph

olume fractionsφi (that means, we restrict ourselves to co
ositional information only). In this sense we introduce

ollowing basic assumption13

= f (Mi, φi), (6)

hereMi (i = 0, 1, 2,. . ., n) are the phase moduli of alln
onstituent phases andφi the volume fractions of then phases
he most general average value is the general power
weighted by volume fractions)13

¯X =
(∑

φiM
N
i

)1/N

, (7)

ith the summation extending over alln constituent phase
he arithmetic mean (N = 1) corresponds to the Voigt bou
upper bound) of the shear and bulk moduli,GV and KV,
espectively, and the harmonic mean (N =−1) correspond
o the Reuss bound (lower bound) of the elastic moduliMR.
f course, in the case of two-phase materials one of the

olume fractions is redundant, and one can adopt the
ion φ1 ≡ 1− φ andφ2 ≡ φ. When, additionally, the seco
hase is the void phase (with zero elastic moduliM2 = 0), and
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the elastic moduli of the solid matrix or skeleton phase are
denoted asM1 ≡ M0 as usual, the Voigt bounds reduce to

MV = (1 − φ)M0 (8)

and the Reuss bounds degenerate to zero identically.
The best possible bounds for the effective elastic mod-

uli of macroscopically isotropic two-phase composites, given
just volume-fraction information, are the Hashin–Shtrikman
bounds (HS bounds),14 cf. also Refs. 3–6, 12, 13. In the spe-
cial case of porous materials, where voids are one of the
phases (with zero elastic moduliG2 = 0, K2 = 0), φ2 ≡ φ is
the porosity and the elastic moduli of the solid matrix or
skeleton phase are denoted asG1 ≡ G0, K1 ≡ K0 as usual, the
HS upper bounds reduce to

G+
HS

G0
= 1 −

[
15K0 + 20G0

9K0 + 8G0 + (6K0 + 12G0)φ

]
φ, (9)

K+
HS

K0
= 1 −

[
3K0 + 4G0

3K0φ + 4G0

]
φ. (10)

and the HS lower bounds degenerate to zero. HS bounds have
been theoretically derived for the shear modulusG and the
bulk modulusK. An estimate for the corresponding HS bound
for the tensile modulusE can be obtained via the standard
relation12,13
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size distribution that enables space filling, featuring a fractal
microstructure.

Note that in general the effective Poisson ratio does not
obey the Voigt and Reuss bounds and need not even lie be-
tween that of the constituent phases.3,17,20While in the case
of dense composites, in the absence of a better alternative, it
is often recommended to calculate the effective Poisson ratio
of composites via the mixture rule (i.e. as an arithmetic mean
weighted by volume fractions), this simple remedy evidently
fails in the case of porous materials. According to the self-
consistent and differential approaches (see below) the asymp-
totic value, towards which the matrix or skeleton Poisson ratio
tends for high porosities, is invariablyν* = 0.2, while accord-
ing to the Mori–Tanaka approach15 the predicted asymptotic
value lies somewhere between the matrix or skeleton Poisson
ratio ν0 and the value 0.2, and is for porous materials (with
spherical pores) given by the formula

ν∗ = 1 − 5ν0

9 + 5ν0
. (14)

4. Effective elastic moduli of porous materials: linear
approximations

In the case of porous materials it is convenient to define a
r
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HS = 9KHSGHS

3KHS + GHS
. (11)

n the very special case of porous materials with a m
r skeleton Poisson ratio of 0.2 (ν0 = 0.2, corresponding t
K0 = 4G0) it can be shown that the HS upper bounds red
o

E+
HS

E0
= G+

HS

G0
= K+

HS

K0
= 1 − φ

1 + φ
. (12)

ote that for this case the HS upper bounds are i
ical to the Mori–Tanaka predictions for random mat
ls of matrix-inclusion type with spherical pores15 and to

he Kuster–Toks̈oz relation,16 cf. Refs. 17, 18. It has bee
hown recently12 that in the alumina–zirconia system
ori–Tanaka prediction or Kuster–Toksöz relation is an ex

ellent approximation to the HS upper bound for the
ile modulus (error < 0.1%) and for the shear modulus
or < 2.6%), but not for the bulk modulus (error up to 14.3
or the purpose of later reference we note that Eq.(12) can
e approximated by the following second-order polynom

E+
HS

E0
= G+

HS

G0
= K+

HS

K0
≈ 1 − 1.71φ + 0.71φ2. (13)

enerally the microstructure corresponding to the HS bo
s the so-called Hashin assemblage,19 consisting of polydis
erse composite spheres containing concentric spheric
lusions. In the case of macroscopically isotropic porous
erials the Hashin assemblage would be approximated
aterial consisting of hollow spheres with an infinitely w
elative elastic modulus as

r ≡ M

M0
, (15)

hereM is the effective elastic modulus (as before) andM0
he elastic modulus of the matrix phase (in the case of po
aterials of the matrix-inclusion type, i.e. porous mate
ith closed pores) or else the elastic modulus of the s
keleton phase (in the case of bicontinuous porous mate
.g. open-pore cellular solids or foams). Using this nota

he Voigt bounds of the relative elastic moduliMrV of porous
aterials decrease linearly with increasing porosity, exh

ng a slope of−1,

rV = MV

M0
= 1 − φ, (16)

hile the HS upper bounds are non-linearly decreasing
ith an initial tangent slope of−1.71 for a material wit

0 = 0.2, cf. Eq.(13). For very low porosities (φ → 0), where
utual interactions between the pores can be neglecte

alled dilute approximation) it is justified to assume a lin
ependence of the relative elastic moduli on the porosit

r = 1 − [M]φ, (17)

here [M] is the intrinsic elastic modulus defined as

M] ≡ − lim
φ→0

Mr − 1

φ
. (18)

ote the new sign convention in this definition, which is
ontrast to our previous papers21–23and to common practic
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in suspension rheology24 but contributes much to clarity and
simplification, cf. also Ref. 12 and our recent paper concern-
ing thermal conductivity.25

Based on the exact classical solution of the spherical-
cavity problem (single spherical void embedded in an infinite
elastic medium)26 explicit limit approximations to the prob-
lem of non-interacting spherical cavities (i.e. a dilute system
of pores) in an elastic matrix have been obtained by Dewey27

and Mackenzie.28 For the relative shear modulusGr, the rela-
tive bulk modulusKr, the relative tensile modulusEr and the
relative Poisson ratioνr these so-called dilute approximations
(or Dewey–Mackenzie relations) are5,6,29

Gr = 1 − 15(1− ν0)

7 − 5ν0
φ, (19)

Kr = 1 − 3(1− ν0)

2(1− 2ν0)
φ, (20)

Er = 1 − 3(1− ν0)(9 + 5ν0)

2(7− 5ν0)
φ, (21)

νr = 1 + 3(1− ν2
0)(1 − 5ν0)

2ν0(7 − 5ν0)
φ. (22)

Nemat-Nasser and Hori5 have shown that these relations have
been derived under the assumption of prescribed macrostrain.
When macrostress is prescribed the results are of the form5,18

M
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Table 1
Intrinsic elastic moduli [G], [K], [E] for different matrix Poisson ratiosν0

ν0 [G] [K] [E]

−1.0 2.5 1 1
−0.5 2.368 1.125 1.539
−0.2 2.250 1.286 1.800
−0.1 2.200 1.375 1.870

0 2.143 1.5 1.929
0.1 2.077 1.688 1.973
0.17 2.024 1.886 1.994
0.2 2 2 2
0.23 1.974 2.139 2.004
0.25 1.957 2.25 2.005
0.26 1.947 2.313 2.006
0.268667 1.939 2.371 2.006
0.27 1.938 2.380 2.006
0.3 1.909 2.625 2.005
0.31 1.899 2.724 2.004
0.333333 1.875 3 2
0.4 1.800 4.5 1.980
0.5 1.667 ∞ 1.917

Values of the intrinsic elastic moduli are listed inTable 1
in dependence of the matrix or skeleton Poisson ratioν0.
Note that for the “normal” Poisson ratiosν0 between 0
and 0.5 the intrinsic tensile modulus remains very close to
the benchmark value of two (i.e. [E] ≈ 2), increasing from
[E] = 1.929 (forν0 = 0) to a maximum value of [E] = 2.006
(for ν0 = 0.268667), followed by a decrease to [E] = 1.917
(for ν0 = 0.5). Due to this “anomalous” behavior of [E] the
value [E] = 2 is attained for two different values ofν0 (viz.
ν0 = 0.2 andν0 = 1/3). The limiting values of the bulk modu-
lus and the tensile modulus for materials with a negative ma-
trix Poisson ratio (approachingν0 =−1 in the extreme case)
are [K] = [E] = 1, corresponding to the Voigt bounds (values
[M] < 1 cannot occur). Curiously, the limiting value of the
intrinsic shear modulus forν0 =−1 materials is [G] = 2.5,
obviously the counterpart of the Einstein value30 for the in-
trinsic shear viscosity occurring in suspension rheology, cf.
Ref. 31. Note also that for the “typical”ν0 values in the range
0.17 <ν0 < 0.33 the values of the intrinsic shear modulus are
always relatively close to the benchmark value of two [G] ≈ 2
(range 1.875 < [G] < 2.024), while for the bulk modulus this
is not the case. Forν0 = 0.5 (corresponding to a completely in-
compressible matrix) the intrinsic bulk modulus “collapses”,
i.e. a very small amount of pores would be extremely ef-
ficient (detrimental) in such a case. In other words, there
would be a singularity in theK–φ diagram atφ = 0, where
t lue
o n
w -
t te
a crit-
i ic
m the
c s
o

r = 1

1 + [M]φ
, (23)

hich can be developed into a series expansion inφ and
runcated after the first-order term (inφ) to give again th
ilute-limit expressions corresponding to Eqs.(19)–(22), cf.
q.(17). It is evident that the first-order coefficients (intrin
lastic moduli) are all functions of the matrix Poisson r
0. Note that, according to the dilute approximation, in
pecial caseν0 = 0.2 the relative Poisson ratio of a poro
aterial with spherical pores is equal to unity, i.e. the effec
oisson ratio remains unchanged with increasing poro
ote also that the so-called self-consistent approach, w

n a certain sense takes interactions into account, resu
ery similar relations, except for the fact that the intrin
lastic moduli are functions of the effective Poisson ratν

nstead of the matrix or skeleton Poisson ratioν0, cf. Refs
, 6. Of course, in the special case of porous materials
pherical pores andν0 = 0.2 both the dilute approximatio
in the dilute limitφ → 0) and the self-consistent approa
principally intended for finiteφ) lead to the identical resu

r = 1 − 2φ, (24)

.e. the intrinsic elastic modulus is exactly equal to two
M] = 2) for the case of spherical pores in aν0 = 0.2 mate
ial. Note that deviations from this value might be attribu
o deviations of the pore shape from sphericity (includin
opological transition from isolated to connected) but ca
ell be caused by deviations of the matrix or skeleton Poi

atio from the valueν0 = 0.2.
he effective bulk modulus steeply falls down from the va
f the matrix bulk modulusK0 to zero. In this connectio
e note that, due to the condition [M] ≥ 1, all linear rela

ions (19)–(22), cf. Eq. (17), whether based on the dilu
pproximation or the self-consistent approach, predict a

cal porosityφC = [M]−1 ≤ 1, for which the effective elast
oduli become zero, i.e. the material looses integrity. In

ontext of percolation theoryφC can be interpreted in term
f a percolation threshold.3,32
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5. Effective elastic moduli of porous materials:
non-linear relations

Experience shows that usually the porosity dependence of
the effective elastic moduli is not linear. The simplest way
to allow for a non-linear dependence is the Coble–Kingery
approach,33 which is as follows:13,34take the linear relation,
Eq. (17), for the matrix Poisson ratio in question and add a
quadratic term inφ, so that

Mr = 1 − [M]φ + αφ2. (25)

Then determine the value of the coefficientα from the condi-
tion thatMr = 0 at least forφ = 1 (which is necessary in order
not to violate the Voigt bound). Thus, in general one obtains
the second-order polynomial13,23

Mr = 1 − [M]φ + ([M] − 1)φ2. (26)

In the special case of porous materials with spherical pores
andν0 = 0.2 this reduces to13,34

Mr = (1 − φ)2. (27)

This relation can be theoretically derived as a special case of
a more general power-law relation (the Archie relation men-
tioned below) and via the functional equation approach.21 At
the same time it is identical with the prediction of the so-
c eri-
c as
f t of
e rical
G ar
s rm
o en-
s llular
m ith-
o ape o
i s not
s sive

F of the
C coin-
c pores
o

criterion controlling the applicability of modulus–porosity
relations and that connectedness of pores does not automati-
cally exclude the use of any relation.

Also for the shear modulus the Gibson–Ashby relation is
of the general form

Gr = γ(1 − φ)2, (28)

but according to Gibson and Ashby9 the prefactorγ (an ad-
justable parameter) isγ = 3(1 +ν0)/4 (as determined by their
fitting collected data), which has the unpleasant consequence
that it is not unity for porous materials withν0 = 0.2 (but cu-
riously for materials withν0 = 1/3, which is strange at best).
Therefore, we conjecture that the prefactorγ = 3(1 +ν0)/4
proposed by Gibson and Ashby9 is slightly too low and pro-
pose to replace it byγ = 5(1 +ν0)/6 for Eq.(28)to be in com-
plete accordance with the benchmark form, Eq.(27), at least
in the case of porous materials withν0 = 0.2. The principal
problem, however, remains that for all matrix or skeleton
Poisson ratios other thanν0 = 0.2, the Gibson–Ashby rela-
tion for the shear modulus leads to the unphysical result that
Gr 
= 1 atφ = 0 (which defies the definition of relative moduli).
This, of course, is more than only an aesthetical deficiency,
since, strictly speaking, it renders the Gibson–Ashby relation
for the shear modulus, Eq.(28), useless in the range of small
porosities, cf.Fig. 2.

the
C la-
t
a
n al
p -
o
u ce of
t ense
f is
h r two

F -
d ose
o to be
3 o
c
r

alled differential approach for porous materials with sph
al pores andν0 = 0.2.17,18Interestingly, the same result w
ound for the tensile modulus by fitting a large amoun
xperimental data on real materials with the semi-empi
ibson–Ashby model35 for low-density open-pore cellul
olids (foams), cf.Fig. 1. We emphasize that the general fo
f the Gibson–Ashby relations has been derived via dim
ional arguments (using standard beam theory) for a ce
odel solid consisting of a network of open cubes, i.e. w
ut any recourse to the assumptions of spherical pore sh

solated-pore topology. This indicates that in many case
phericity itself but only approximate isometry is the deci

ig. 1. Relative tensile modulus of porous ceramics; the predictions
oble–Kingery relation (for closed isolated pores of spherical shape)
ide with those of the Gibson–Ashby approach (for open connected
f non-spherical shape).
r

Irrespective of the matrix or skeleton Poisson ratio
oble–Kingery relation(27) may be expected to be a re

ively reasonable prediction for the tensile modulusE (and
lso for the shear modulusG whenν0 ≈ 0.2), but certainly
ot for the bulk modulusK. This is connected with a princip
roblem of Coble–Kingery relations: if [M] > 2 the second
rder polynomials exhibit a minimum with negativeMr val-
es at porosities <100%, which is a natural consequen

he parabolic form of these relations but is clearly nons
rom the physical point of view. Obviously, this problem
arder in the case of the bulk modulus than with the othe

ig. 2. Relative shear modulus of porous ceramics withν0 = 0.2; the pre
ictions of the Coble–Kingery relation (curve) do not coincide with th
f the Gibson–Ashby approach (squares) when the prefactor is taken
(1 +ν0)/4 (corresponding to 0.9 in the caseν0 = 0.2), cf. Ref. 9, they d
oincide, however, when the prefactor is chosen to be 5(1 +ν0)/6, which
educes to 1 in the caseν0 = 0.2.
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moduli, cf. Table 1. An entirely different relation has been
proposed by Christensen36 and Warren and Kraynik37 for the
bulk modulus of low-density cellular solids (i.e. for very high
porosities):

Kr = 1 − 2ν0

3
(1 − φ). (29)

Evidently the linear form of this relation prohibits its use in
the range of low porosities. For example, in the case of porous
materials withν0 = 0.2 it predictsKr = 0.2(1− φ), which is
wrong of course (since it defies the definition of relative mod-
uli, see above). A possibility, though awkward, to overcome
this problem is to combine the Warren–Kraynik–Christensen
(WKC) relation (which can be a realistic prediction in
the high-porosity region) with the Coble–Kingery relation
(which can be realistic in the low-porosity region). To ensure
in any case positivity of theKr values the porosityφX at the
crossover of the two curves (calculated by simply equating
the Coble–Kingery relation(26) for the bulk modulus and
the WKC relation(29) for the ν0 value in question) should
be used as the point of continuation, cf.Fig. 3. Note again
that for materials withν0 > 0.2 the Coble–Kingery relation
is useless for high porosities (due to the negative bulk mod-
uli predicted for porosities <1, which is nonsense from the
physical point of view) while the WKC relation is generally
useless for low porosities (due to the prediction of a relative
b ion
w for
m s
m
h rosi-
t s of
i -
e d
t

ur-
s ussed

F n for
ν

p n for
ν

above) it is in practice unnecessary to emphasize the condi-
tion ν0 = 0.2 in this case, because for pores of spherical (or
only isometric) shape the intrinsic tensile modulus is always
very close to the benchmark value of two (i.e. [E] ≈ 2, range
1.97 < [E] < 2.01), even if the matrix or skeleton Poisson ra-
tio varies in the extremely wide range betweenν0 = 0.1 and
ν0 = 0.4 (which covers practically the whole range of inter-
est for ceramic materials), cf.Table 1. Notwithstanding the
problems with the bulk modulus, in the case of the tensile
modulus the Coble–Kingery relations can yield a prediction
of the porosity dependence that satisfies all basic criteria of
physical plausibility: it ensures thatMr = 0 for φ = 1 and it
does not violate the Hashin–Shtrikman upper bound. For ex-
ample, in the case of porous materials withν0 = 0.2 the initial
tangent slope is−2 and the curvature is 1, whereas the HS
upper bound is characterized by an initial tangent slope of
approximately−1.71 and a curvature of 0.71 in this case, cf.
Eq.(13).

Following the key paper by Coble and Kingery33 many
other relations have been proposed to describe the porosity
dependence of the relative tensile modulus. In the sequel we
give a brief, but in a certain sense exhaustive, overview of
these. In order to clearly emphasize the similarities and dif-
ferences between them we adopt a unified notation, using the
critical porosityφC and the concept of intrinsic elastic moduli
[M] introduced above wherever feasible.
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ulk modulus <1 for zero porosity, which is in contradict
ith the definition of relative bulk moduli). For example,
aterials with a matrix Poisson ratio ofν0 = 0.3, both curve
eet at a porosity ofφX = 0.534, cf.Fig. 3. For materials with
igher matrix Poisson ratios the curves meet at lower po

ies and vice versa. Only in the (unrealistic) limiting case
ncompressible materials withν0 = 0.5 and maximally aux
tic materials withν0 =−1 the Coble–Kingery prediction an

he WKC prediction coincide.
In the remaining part of this section let us restrict o

elves to the tensile modulus. For evident reasons (disc

ig. 3. Relative bulk modulus according to the Coble–Kingery relatio

0 = 0 (thin solid curve),ν0 = 0.2 (thin dashed curve) andν0 = 0.3 (thick
arabolic curve) and the Warren–Kraynik–Christensen (WKC) relatio

0 = 0.3 (thick straight line).
It is understood, that in practice these parameters
sually be treated as fit parameters to be determined
xperimentally measured data a posteriori. This is par

arly true for the critical porosityφC, for which reliable an
ufficiently precise a priori estimates will hardly be av
ble for real materials.32 Note that for porous materials the
xists no reliable benchmark value forφC comparable t
he value of approximately 0.64 (i.e. 64%) for the pa
ng density of monodisperse rigid spheres in random c
acked (rcp) arrangement.38,39 Nevertheless, in exception
ases (i.e. for precisely defined model microstructures)
xist estimates ofφC which seem to be realistic, obtain
ia computer simulations.10 When these model materials a
onsidered to reflect the microstructure of any real mat
o a sufficient degree, then of course any of the follow
elations may be used for prediction purposes as well.
imilar spirit (only replacing the virtual computer simulat
y a real-world experiment), when a sufficient numbe
ata has been measured for materials which have certai

cal microstructural features in common (e.g. closed sp
al pores), a master curve can be fitted to the measured
hich can then be used to roughly predict the behavio
imilar materials.

Spriggs40 has suggested the use of a simple expone
elation of the form

r = exp(−[E]φ), (30)

here the intrinsic tensile modulus [E] is principally a pa
ameter to be determined by fitting experimentally meas
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data. Obviously, for small porosities (φ → 0) Eq.(30)reduces
to Eq.(17).

A derivation of the Spriggs relation via the so-called func-
tional equation approach has been given recently.21 It seems
that Zimmerman41 was the first to use a differential scheme
approach to derive a special case of the Spriggs relation,
which leads to the simple prediction

Er = exp(−2φ). (31)

Of course, both the Spriggs relation(30)and its special case,
Eq. (31), suffer from a serious principal drawback:Er is not
zero forφ = 1. That means, the Spriggs relation necessarily
violates the HS upper bound (and even the Voigt bound).
For this reason Hasselman,42 based on previous work by
Hashin,19 suggested a relation which can be written as

Er = 1 − φ

1 + CHφ
, (32)

whereCH has to be determined principally by fitting exper-
imentally measured data. This relation is clearly non-linear
and monotonically decreasing, andE = 0 is guaranteed for
φ = 1. Unfortunately, however, the inverse of−CH cannot be
interpreted as a critical porosity since in the limitφ → −1/CH
Eq.(32)diverges (|E| → ∞), i.e.−1/CH must always lie out-
side of the interval 0 <φ 1. Thus, the interpretation of−1/CH
i nd
t tion
( of
e itive
v the
H r-
p ion
r

E

c for
p -
c

ified
e

E

c at
φ iven
v e of
p nen-
t

E

N del
r ting
c ility

of Er = 0 at porosities lower than 100 % (i.e.φ < 1), one can
include an additional parameter in the modulus–porosity rela-
tion, the critical porosityφC, which is able to take the possible
occurrence of a percolation threshold into account. This re-
sults in Mooney-type exponential relations,13,22,45which are
of the form

Er = exp

( −[E]φ

1 − φ/φC

)
. (36)

As before, under the assumption of spherical pores we can set
[E] = 2, which reduces the number of adjustable fit parameters
by one.

Power-law relations represent another class of models,
principally different from the exponential relations just pre-
sented. The simplest relation of this kind is the Archie-type
relation3

Er = (1 − φ)[E], (37)

a derivation of which via the functional equation approach
has been given recently.21 Of course, in the case of the tensile
modulus the Archie relation can be considered as a general-
ization of the Coble–Kingery relation

Er = (1 − φ)2. (38)
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n terms of a critical porosity is principally inadmissible a
here is no physical meaning left in the Hasselman rela
32).13,23 This finding corresponds to the fact that fitting
xperimentally measured values invariably leads to pos
alues ofCH.43,44 Nevertheless, a very special case of
asselman relation(32)can still be useful for predictive pu
oses, viz. the caseCH = 1. In this case the Hasselman relat
educes to the Mori–Tanaka/Kuster–Toksöz relation,

r = 1 − φ

1 + φ
, (33)

f. Eq. (12), which is identical to the HS upper bound
orous materials with spherical pores andν0 = 0.2, as dis
ussed above.

Only recently it has been recognized that also the mod
xponential relation22

r = exp

(−[E]φ

1 − φ

)
(34)

ircumvents the aforementioned compatibility problem
= 1. In Ref. 22 a derivation of this relation has been g
ia the functional equation approach. Trivially, in the cas
orous materials with spherical pores the modified expo

ial leads to the prediction

r = exp

( −2φ

1 − φ

)
. (35)

ote that, strictly speaking, this modified exponential mo
esults in a zero relative tensile modulus only in the limi
ase of 100% porosity. In order to allow for the possib
either of these relations exhibits a compatibility problem
= 1 and, again, in the dilute limit (φ → 0) they reduce t
q.(17). Moreover, as before with the exponential relatio

n order to allow the possible occurrence of a percola
hreshold, i.e.Er = 0 for porositiesφ < 1, the critical porosit
C can be introduced as an additional parameter. This re

n a Krieger-type power-law relation,24,31in elasticity contex
ften called Phani–Niyogi relation46

r =
(

1 − φ

φC

)[E]φC

. (39)

s before, under the assumption of spherical pores we
et [E] = 2, which again reduces the number of adjustab
arameters by one. We would like to emphasize again tha

hough sometimes considered to be purely empirical, a
xponential and power-law relations mentioned above
e derived via a functional equation approach.21,22,31What
akes them semi-empirical fit models in practice is only

act that, due to variations in pore shape (strong anisom
he first-order coefficient (intrinsic tensile modulus) may
e reliably known and that, due to the difficulty to assess
uantify pore size distribution and connectivity, a priori e
ates of the critical porosity are usually not available. N
owever, that Eqs.(31), (33), (35)and(38)are parameter-fre
redictive models, not fit equations.

Recently, a new relation has been proposed by Pabs
regorov́a23

r = (1 − [E]φ + ([E] − 1)φ2)
(1 − φ/φC)

(1 − φ)
. (40)
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This relation has been found heuristically and reduces to Eq.
(17) in the dilute limit (φ → 0, implying φ � φC). Further-
more it ensures thatEr = 0 whenφ =φC, as required. Setting
[E] = 2 this relation adopts the extremely simple form

Er = (1 − φ)

(
1 − φ

φC

)
, (41)

which seems to be the simplest thinkable relation allowing
for a percolation threshold (via the critical porosityφC). In
the absence of a percolation threshold (i.e.φC = 1) it reduces
to the Coble–Kingery relation(38), as required. We recall
that [E] = 2 is always a reasonable approximation for porous
materials with isometric pores, independently of the precise
value of the matrix or skeleton Poisson ratioν0, cf.Table 1and
the discussion above. Of course, unless the critical porosity
φC is known a priori (a rather exceptional case) and an ap-
plication of Eq.(41) for predictive purposes is intended, this
discussion is of more or less philosophical character anyway.
As long as Eq.(41) is used as a fit model, its application to
cases where the assumption [E] = 2 is (approximately) jus-
tified may be called semi-empirical (because its form is a
special case of Eq.(40)), while its application to cases where
the assumption [E] = 2 is not justified must be considered as
purely empirical. In any case, contrary to the situation with
the parameter−1/CH occurring in the Hasselman relation
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cave faces) cannot be expected to be responsible for measur-
able deviations in the intrinsic elastic moduli. Their intrinsic
tensile modulus will still be close to the benchmark value
([E] ≈ 2).

In concluding this section we would like to emphasize that
of course all relations presented here for the relativetensile
modulus can be used forfitting experimentally measured data
for any kind of elastic modulus (and many other properties as
well). Also in these cases it may under certain circumstances
be legitimate to interpret the values obtained for the intrinsic
moduli by fitting in terms of a pore shape influence. It has
to be kept in mind, however, that the intrinsic value of 2 in
the case of porous materials with spherical or isometric pores
is specific only to the tensile modulus (where [E] = 2 exactly
for ν0 = 0.2 andν0 = 1/3 and [E] ≈ 2 for all matrix Poisson
ratios 0 <ν0 <0.5). It can be a good approximation for the
shear modulus as well (for the matrix or skeleton Poisson ra-
tios commonly encountered in practice), but certainly not for
the bulk modulus or other properties. That means, only for
the tensile modulus (and approximately for the shear modu-
lus) the parameter-free special relations(31), (35) and(38)
given above (specialized by setting [E] = 2), including the
Mori–Tanaka/Kuster–Toks̈oz relation(33), can be expected
to provide useful predictions. Eq.(31), of course, is prin-
cipally disqualified for a completely different reason (viz.
because it violates the HS upper bound and even the Voigt
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32), cf. the discussion above, there are no principal ob
ions against the interpretation ofφC in terms of a critica
orosity. In other words, even if taken as a purely em
al fit equation, our relation remains principally meanin
rom the physical point of view.

We emphasize that, except for the Spriggs relation(30)and
ts special case, Eq.(31), none of the relations cited abo
ecessarily violates the HS upper bound. This is the
owever, e.g. for the model derived for cubic pores by I
nd Cohen47

r = 1 − φ2/3. (42)

eedless to say, the use of such a model should be av
occaccini et al.48 have modified this relation in a way th

he HS upper bound need not be violated any more. The
ical significance of their relation, however, concerns stro
nisometric pores, which are beyond the scope of this p

In principle, it can be attempted to interpret deviation
he intrinsic tensile modulus determined by fitting with
f the relations above from the benchmark value [E] = 2 in

erms of an influence of pore shape. This is possible bec
sually the deviations in [E] caused by a variation of the m

rix or skeleton Poisson ratio are in practice negligible. A
rom the obvious advice that such an interpretation shou
ased on a reliable determination of [E] (e.g. by comparin

he coincidence of fitting results using several of the rela
bove) it should be kept in mind, that significant deviation
E] require a considerable degree of pore anisometry (
ation or flattening). Non-spherical pores which are mo

ess isometric (e.g. of polyhedral shape or pores with
.

ound, cf. the discussion above), while the Kuster–Toöz
elation(33) represents no improvement over the HS up
ound (because it is identical to it). Similarly, we recall t

he Pabst–Gregorová relation(40)adopts its elegant and sim
le form(41)only in the case [E] = 2. This relation, howeve

s not per se meant to be a predictive model (since the
cal porosityφC can usually not be expected to be know
riori), but a fit equation. As such, of course, it can be u
uite universally.

We believe that the classification given in this sectio
ational and exhaustive, at least for approximately isom
ores, in the sense that all relations not mentioned in
ection have to be considered with great scepticism. This
e said, e.g. of the sophisticated relation derived by Niels49

special case of which is the relation of Ramakrishnan
runachalam50 (which is similar to the Hasselman relati
nd suffers from the same drawbacks) and of the remar
elation proposed by Boccaccini and Fan.51 Fortunately, a
east, all of these relations contain the Coble–Kingery rela
38)as a special case.

. Case study: effective tensile moduli of porous
lumina, zirconia, silicon carbide and silicon nitride

As a practical example of the application of some
he above relations we consider alumina (Al2O3), zirconia
ZrO2), silicon carbide (SiC) and silicon nitride (Si3N4), all
repared with corn-starch (median size approximately 14�m

n all cases) as a pore-forming agent and all with a com
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Table 2
Elastic properties of almost pore-free (densely sintered), macroscopically
isotropic polycrystalline alumina, zirconia, silicon carbide and silicon nitride

Elastic property Al2O3 ZrO2 SiC Si3N4

E0 400 210 420 320
G0 163 80 179 126
K0 247 184 212 232
ν0 0.23 0.31 0.17 0.27

rable microstructure (matrix-inclusion-based microstructure
with the possibility of pore contact or overlap). The (experi-
mentally measured) data for alumina and zirconia are taken
from Refs. 43, 44 the data for silicon carbide from Ref. 52
and for silicon nitride from Ref. 53 to which the reader should
refer for a specification of the chemical and phase composi-
tion as well as processing details. The elastic properties of the
pore-free, densely sintered polycrystalline ceramics (matrix
material), which are necessary input data for the calculation
of relative moduli, have been extracted from literature values
determined at room temperature (25± 3◦C) for samples with
a total porosity <3% and are listed inTable 2. For alumina
and zirconia these input data are taken from the critical com-
parison in Ref.54, for silicon carbide and silicon nitride they
are the result of an extensive literature research, partly, but
not exclusively, based on the electronic NIST data bases.55

Introducing artificial porosity via pore-forming agents
(e.g. starch) is a common way to produce ceramics with
controlled porosity, characterized by a pore size significantly
larger (typically 1–2 orders of magnitude) than the grain size.
Essentially this processing technique results in porous mate-
rials with large void inclusions, i.e. large closed pores, but the
possibility of pore contact or even a certain degree of overlap
cannot be absolutely excluded. Large pores (typically tens
of �m) embedded in a fine-grained (typically around 1�m)
matrix of host material, will not exhibit significant shrink-
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Fig. 4. HS upper bounds for the relative shear modulus of porous ceramics
with spherical or isometric pores (upper solid curve: ZrO2; lower dashed
curve: SiC, Al2O3 and Si3N4 are in between).

Fig. 6 shows the porosity dependence of tensile moduli
data reported for alumina,43,44zirconia,43,44silicon carbide52

and silicon nitride.53 In spite of the relatively large scatter of
the values a common trend exhibited by all these ceramics
can be recognized. This is indicative of the same or at least
a very similar type of microstructure. Although, due to its
organic character, the pore-forming agent (starch) is burnt out
and vanishes completely during heating up to the sintering
temperature of the ceramics, the pores will remain isometric
and the microstructure will be essentially matrix-inclusion-
based, permitting only a small degree of pore overlap. All
values shown inFig. 6 obey the HS upper bound(33), as
required for macroscopically isotropic ceramics. Evidently,
the special case of the Spriggs relation, Eq.(31), is useless
for prediction, because it violates the HS upper bound.

The Coble–Kingery relation has evidently a better score: at
least it does not violate the HS upper bound and it is clearly an
improvement over the latter when a rough estimate is needed.
However, when all data are fitted with one master curve us-
ing the Archie-type relation(37) the resulting intrinsic ten-
sile modulus obtained from fitting is [E] = 2.61, cf.Table 3.
Similarly, when the Phani–Niyogi relation(39) is used for
fitting the intrinsic tensile modulus is [E] = 2.41 (the expo-

F mics
w solid
c

ge during firing (even at temperatures and in time sche
here the matrix becomes densely sintered, i.e. attains a

heoretical density) and will remain as void inclusions in
nal ceramic. These will then determine the effective ela
roperties. For such materials it is possible to conside
atrix (dense host material) as a homogenized medium

o invoke the Voigt bounds and the upper Hashin–Shtrik
ounds in their simple form for two-phase materials.

Figs. 4 and 5show the HS upper bounds of the rela
hear and bulk moduli, respectively, of SiC and ZrO2. These
wo ceramics exhibit the most extreme matrix Poisson
iosν0 of the four ceramics investigated, viz.ν0 = 0.17 (SiC)
ndν0 = 0.31 (ZrO2), i.e. Al2O3 and Si3N4 are always inter
ediate between these two extremes. Note that for the
odulus (Fig. 4) the HS upper bound is always slightly low

or the material with smallerν0, whereas for the bulk mo
lus (Fig. 5) it is much higher for the material with smal
0. The influence ofν0 is practically negligible for the tensi
odulus and, therefore, the HS upper bound can be dra
ne single line for all ceramics, corresponding to Eq.(33).
ig. 5. HS upper bounds for the relative bulk modulus of porous cera
ith spherical or isometric pores (upper dashed curve: SiC; lower
urve: ZrO2, Al2O3 and Si3N4 are in between).
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Fig. 6. Relative tensile modulus of porous ceramics prepared with corn-
starch as a pore-forming agent (measured values and predictions); HS up-
per bound (thin solid line with crosses), experimentally measured values
(squares: Al2O3, diamonds: SiC, cf. Ref. 52, triangles: Si3N4, cf. Ref. 53,
circles: ZrO2), predictions for spherical pores (thin dotted curve: Spriggs re-
lation(31); thin dashed curve: Coble–Kingery relation(38), thin solid curve:
modified exponential relation(35)) and fitted master curve (thick solid curve
obtained by fitting with our new relation, Eq.(41), φC = 0.684).

nent [E]φC being 1.45 and the critical porosity,φC = 0.725,
cf. Table 3). This indicates, that when the exponent 2 in the
Coble–Kingery relation(38) is allowed to vary freely (as an
adjustable fit parameter), the fitted curve corresponds to a
value significantly larger than 2. This is clear quantitative
evidence (apart from the obvious qualitative findings of vi-
sual inspection ofFig. 6) of the fact that the Coble–Kingery
prediction is not completely satisfactory in this case.

By far the best prediction is achieved with the modified
exponential relation(35). We emphasize that the latter is,
similar to the HS upper bound and the Coble–Kingery pre-
diction, an unbiased a priori prediction, without the need for
fitting. It is solely based on the assumption that the pores
are spherical. In this case, if the intrinsic tensile modulus is
allowed to vary, i.e. if we consider [E] as an adjustable pa-
rameter to be determined by fitting according to Eq.(34),
cf. Table 3, the result is [E] = 2.20, which is a value fairly
close to [E] = 2. Similarly, when a critical volume fraction is
introduced as a fit parameter, i.e. the Mooney-type relation
(36) is used with [E] = 2, this critical volume fraction turns
out to beφC = 1.146, i.e.φC ≈ 1. Both findings confirm in a

Table 3
Fit parameters determined for the master curve of the porosity dependence
of the tensile modulus of four types of ceramics (alumina, zirconia, silicon
carbide, silicon nitride) with matrix-inclusion type microstructure prepared
w

M

M

A

P

P

quantitative way the good quality of the prediction via the
modified exponential relation(35).

In order to obtain a master curve characterizing as
precisely as possible the general trend of the porosity-
dependence of the elastic moduli, which is common to all
materials of a given type of microstructure (irrespective of
the chemical or phase composition of the matrix or skeleton
phase), it is generally advisable to use the new relation(41)
for fitting. In the present case we obtain

Er = (1 − φ)

(
1 − φ

0.684

)
.

This finding is physically reasonable and visual inspection
shows that it provides an excellent description of the mea-
sured data, cf.Fig. 6. Moreover, the value determined here
for the critical porosity falls well within the approximate
rangeφC = 0.74± 0.09, representing the arithmetic average
(and standard deviation) of critical porosity values deter-
mined for materials with similar microstructure in previous
work.43,44 We emphasize that these critical porosities have
been obtained by extrapolation of real-world experiments on
real materials. Percolation theory has to clarify the question
whether these results can in any way be reconciled with simu-
lations (virtual experiments) performed with model materials
of known and well characterized microstructures.32

7

een
r on-
t ry).
B tio-
n of
m udes
e veral
o a re-
l tly
p

ribed
t n re-
l tion
( nity)
i ulus,
v onds
t

ation
( e
i rco-
l grity
a
t -
i the
C t to
t

ith corn-starch as a pore-forming agent

Fit model [E] φC

odified exponential Er = exp
(−[E]φ

1−φ

)
2.20 –

ooney-type with [E] = 2 Er = exp
( −2φ

1−φ/φC

)
– 1.146

rchie-type Er = (1 − φ)[E] 2.61 –

hani–Niyogi Er = (1 − φ/φC)[E]φC 2.41 0.725

abst–Gregorov́a Er = (1 − φ)(1 − φ/φC) – 0.684
. Discussion and conclusions

The theoretical framework of elastic properties has b
ecalled from the viewpoint of rational mechanics (c
inuum theory) and micromechanics (composite theo
ased on the concept of intrinsic elastic moduli a ra
al classification and a relatively exhaustive overview
odulus–porosity relations has been given, which incl

xponential and power-law expressions as well as se
ther relations, among them the Hasselman relation and

ation with percolation threshold (critical porosity) recen
roposed by Pabst and Gregorová.23

It has been shown that no physical meaning can be asc
o the adjustable fit parameter occurring in the Hasselma
ation(32). Only a very special case of the Hasselman rela
viz. the one for which the fit parameter degenerates to u
s useful for the porosity dependence of the tensile mod
iz. Eq.(33). In this case the Hasselman relation corresp
o the HS upper bound.

It has been shown that, contrary to the Hasselman rel
32), the parameterφC occurring in Eq.(41) can always b
nterpreted as a critical porosity. It corresponds to the pe
ation threshold, at which a porous material looses inte
nd/or attains zero elastic moduli. Eq.(41) is simpler than

he Phani–Niyogi relation(39) (which also allows for a crit
cal porosity or percolation threshold), but also contains
oble–Kingery relation(38) as a special case, in contras

he Hasselman relation(32).
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The simple and elegant second-order modulus–property
relations of the Coble–Kingery type, Eq.(26), including(38),
which have been unduly ignored, or incorrectly cited, in most
relevant papers and textbooks, have been recalled and their
use is advocated for the porosity dependence of the tensile
and shear moduli. In spite of their simplistic derivation and
the unphysical artifacts they produce when the intrinsic elas-
tic moduli are (significantly) larger than two, i.e. [M] > 2, it
seems that the Coble–Kingery relations are relatively sound
from the viewpoint of micromechanics (because they do not
violate the Hashin–Shtrikman upper bounds), in contrast,
e.g. to the frequently used Spriggs relation(30), including
its special case, Eq.(31), and the Ishai–Cohen relation(42).
Needless to say, the use of the latter two should be generally
avoided.

Moreover, although the (non-linear) Coble–Kingery re-
lations are based on the (linear) Dewey–Mackenzie rela-
tions (19)–(22), which have been rigorously derived only
for a dilute (i.e. non-interacting) system (φ → 0) of isolated
(i.e. closed and non-overlapping) pores of spherical shape, it
has been shown that the principally different, semi-empirical
Gibson–Ashby approach, which is based solely on dimen-
sional arguments for an idealized structure consisting of a
space-filling arrangement of cubic skeletons (modeling an
open-cell cellular solid or foam) supplemented by a numer-
ical value obtained from a master fit of a large amount of
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which renders the Gibson–Ashby relation more acceptable
from the theoretical point of view as an approximation for
the shear modulus, corresponds to a change in the prefactor
by 10%. Such a small change may well be within the un-
certainty of Gibson and Ashby’s master curve fit or within
the natural scatter caused by the relative arbitrariness of sam-
pling (data selection). To make things clear, we think that
Gibson and Ashby’s value for this prefactor, although ob-
tained on the basis of fitting a large amount of measured and
published data, was presumably also guided by the attempt
to achieve agreement with Eq.(27) for ν0 = 1/3. As shown in
the present paper, however, the latter is unjustified on theoret-
ical grounds, because the intrinsic shear modulus forν0 = 1/3
is not [G] = 2 but [G] = 1.875, which prohibits to write the
Coble–Kingery relation for this case in the binomial form of
Eq.(27).

As a paradigmatic example, selected relations have been
applied to describe the porosity dependence of the relative
tensile modulus for alumina, zirconia, silicon nitride and sil-
icon carbide prepared with corn-starch as a pore-forming
agent. It has become apparent that, irrespective of the process-
ing details, porous ceramics with this type of microstructure
(essentially matrix-inclusion-based) follow a common trend,
which is dominant in spite of experimental scatter. Fitting
the master curve with the new relation(41) yields a critical
porosity ofφ = 0.684. In practice this value is roughly in-
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ata measured for low-density (φ → 1) cellular solids, lead
o exactly same result for the porosity dependence o
ffective tensile modulus. This fact, together with the w
nown finding that exactly the same result is also obta
n micromechanics using the differential or functional eq
ion approach, greatly enhances the confidence in Eq.(38)
s a practical benchmark relation for the whole rang
orosities, fromφ = 0 to φ = 1, without necessary recour

o the special assumption of spherical pore shape (as
s they are not anisometric), irrespective of pore topo
isolation or connectedness of pores) and (approxima
ndependent of the matrix or skeleton Poisson ratio (at
n the range 0.1 <ν0 < 0.4). Being the only available powe
aw type benchmark relation of this kind, all other reason
on-exponential relations, e.g. those proposed for (stro
nisometric pores, should be required to reduce to Eq.(38)in

he special case of isometric pores. Note, however, tha
38) cannot be considered as a rigorous upper bound, s
.g. the aforementioned Hashin assemblage19 can principally
xceed it (even if only slightly).

We emphasize that in the special case of materials w
atrix or skeleton Poisson ratio ofν0 = 0.2 the same type

elation, Eq.(27), can be considered as a benchmark rela
or all three elastic moduli (E, G andK). For this reason w
ave proposed to correct the prefactorγ in the Gibson–Ashb
elation for the shear modulus fromγ = 3(1 +ν0)/4 (originally
roposed by Gibson and Ashby) toγ = 5(1 +ν0)/6, which is

he appropriate expression to ensure exact agreemen
q. (27) in the case of materials with a matrix or skele
oisson ratio ofν0 = 0.2, as required. This small correcti
C
icative of the maximum porosity that can be achieved b
rocessing method applied (here, e.g. using starch as a

orming agent). Of course it may vary for different proce
ng techniques, but it should be independent of the ma
n question.

It has been pointed out that for materials with the typ
icrostructure investigated here, the modified expone

elation(35), derived via a functional equation approach22

rovides a satisfactory prediction of the actually meas
orosity dependence. Thus, for the microstructures re

ng from starch burnout the prediction via this new re
ion is far better than the Coble–Kingery prediction,
38), and rather close to the master curve obtained
tting with Eq. (41). This remarkable fact, never sta
n the literature before, seems to be rooted in the di
nt model assumptions that led to the derivation of
35) and (38), respectively, using the functional equat
pproach.21,22,31

Note that, although visual inspection confirms the q
ty of the prediction(35) and the proximity to the mast
urve fitted via Eq.(41), the modified exponential relatio
35) does not predict a critical porosity. As a conseque
f its form it remains principally finite even for very hig
orosities (φ → 1). This does not mean, however, that
35)would be suitable for predicting the porosity depende
f the tensile moduli of low-density cellular materials wit
icontinuous microstructure (i.e. solid networks or open

oams). When measured data are lacking in such a cas
oble–Kingery relation(38) is clearly the better choice f
pproximate modulus prediction.
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2000, pp. 1–162.

4. Milton, G. W., The Theory of Composites. Cambridge University
Press, Cambridge, 2003, pp. 1–719.

5. Nemat-Nasser, S. and Hori, M.,Micromechanics—Overall Properties
of Heterogeneous Materials (2nd ed.). North-Holland/Elsevier, Ams-
terdam, 1999, pp. 1–786.

6. Torquato, S., Random Heterogeneous Materials—Microstructure
and Macroscopic Properties. Springer, New York, 2002, pp. 1–
701.

7. Forte, S. and Vianello, M., Symmetry classes for elasticity tensors.
J. Elasticity, 1996,43, 81–108.

of
uum

pp.

1 orous

1
.

1 ir-

ers,

1 of
mod-

1 ry of

1 lastic

1 ic

1 rical

1 -

1

2 hase
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