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Abstract

Based on the concept of intrinsic elastic moduli an overview of modulus—porosity relations is given, which includes exponential and
power-law expressions as well as the Hasselman relation and a relation recently proposed by Pabst anchGFagdimwnal structure
of these relations is compared and the physical meaning of the parameters discussed. It is recalled that certain popular relations violate the
Hashin—Shtrikman upper bounds and are, therefore, useless (Spriggs relation, Ishai—-Cohen relation). Coble—Kingery relations are recalled in
their correct form and an improved version of the Gibson—Ashby relation for the shear modulus is proposed. Selected relations are applied to
describe the porosity dependence of the relative tensile moduli of alumina, zirconia, silicon nitride and silicon carbide prepared with corn-
starch as a pore-forming agent. Porous ceramics with this type of (matrix-inclusion-based) microstructure are shown to follow approximately
a modified exponential relation and can be fitted by a master curve with critical porosity 68.4%.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction lished data on porous alumina, zirconia, silicon carbide and
silicon nitride—the usefulness of some of these relations
Elastic properties play a key role in determining the me- for the description (fitting) of experimentally measured data
chanical behavior of ceramic materials, including glasses, as well as for the prediction (estimate) of elastic moduli of
and, not surprisingly, an immense literature is available on porous ceramics based on an elementary information on the
the porosity dependence of elastic moduli. It is not the pur- type of microstructure.
pose of this contribution to review the many important the-  Although the present text is to a large degree self-
oretical and experimental papers that have been publishedcontained, we assume the reader to be familiar with the exact
in this field. On the contrary, here it is our aim to provide a theory of linear elasticity? and with the fundamentals of
fresh view on this old theme, as far as possible unbiased bymicromechanic$®
tradition. We investigate the formal mathematical structure
of commonly used, less commonly used and recently intro-
duced modulus—porosity relations and present a hopefully
rational classification and a more or less exhaustive overview2. Elastic moduli from the viewpoint of rational
of these, at least for approximately isometric pores. mechanics
We will discuss commonly encountered problems and
misunderstandings with respect to modulus—porosity rela-  The elastic behavior of brittle materials can be described
tions in general and will demonstrate—with recently pub- within the framework of linear elasticity theory. In the case of
small deformations (i.e. invoking geometrical linearization)
* Corresponding author. Hooke’s law for anisotropic elastic solids (i.e. the physically
E-mail address: pabstw@vscht.cz (W. Pabst). linearized constitutive equation) can be written in direct ten-
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sor notation as (i.e. an averaged Hooke’s law for heterogeneous materials),
where the angular brackets denote volume averages of the
T = CE, ) . :
Cauchy stress tensor and the small strain tensor, respe&ively.
whereT is the Cauchy stress tensor (a symmetric second- In principle, the effective stiffness tensor can be predicted
order tensor)( the stiffness tensor (a fully symmetric fourth- ~ exactly when the properties of the constituent phases (i.e. for
order tensor, also called elasticity tensor or tensor of elastic Porous materials essentially those of the matrix or skeleton
constants) ankl the so-called small strain tensor (a symmet- phase, since the void phase usually exhibits more or less “zero

ric second-order tensob?’-8 properties”) and all details of the microstructure are known.
In the case of isotropic materials Hooke's law, Et) In practice this is of course not the case.
adopts the form Micromechanics provides theoretical concepts for quanti-
fying microstructural information to an arbitrary degree of
T = A(E)1 + 21E, ) precision and including it into the description of a mate-
(Cauchy—Hooke law), where the elastic constants (elastic'i@! in the form of so-called correlation functioﬁéf The
moduli) A and . are called Laré constants (or Latnmod- Iowest—ordgr microstructural information (one—ppmt corre-
uli, units [GPa]), tr denotes the trace of a tensor &fislthe lation function) concerns only the volume fractions of the
second-order unit tensor. phases. Higher-order microstructural information (two-point,

In terms of the tensile moduli&and the Poisson ratio three-point, in general multi-point correlation functions) can
the Cauchy—Hooke law for isotropic materials can be written @ccount for size, shape and orientation features, including

as the corresponding distributio?$ However, for real mate-
E rials higher-order microstructural information is accessible
T = E + v (trE)1 () only via tomographic techniques (direct 3D information) or,
(1+v) (1—-2v) although to a limited degree only, by image analysis of planar

From Eq(3)itis evident that for the Poisson ratithe values ~ Sections (partial 3D information indirectly inferred from 2D
0.5 and—1 are not allowed. Actually, as a consequence of information). Computer S|mglat|ons, of course, are a power-
the second law of thermodynamics the following inequality ful tool to analyze model microstructures, cf., e.g. Ref. 10

must hold for isotropic materiafs® and the extensive work of Torquato and his coworkers cited
in Ref. 6.
—1<v <05 (4) For the remaining part of this paper we confine ourselves

Although in some of the older literature the opinion has pre- {0 iSotropic materials with effective elastic modadi(where
vailed that (according to some alleged “experience with real M stands for the effective tensile modulbisshear modulus
materials”) the Poisson ratio should always be positive for G OF bulk modulusk, respectively, and the subscript “e”, de-
isotropic materials (i.e. 0x<0.5), it is well known today notlr_lg “effective”, has been omitted for convenience) which
that isotropic materials with negative Poisson ratio, so-called 2€ in general temperature-dependent, c.f. Refs12 We
“auxetic materials”, do exist and can be designed and pro- SUPPOse them to be functions of the phase moliland
duced, cf. Refs. 4, 6, 9 and the literature cited therein. TheseMicrostructural information of lowest-order only, i.e. phase
materials show the contra-intuitive behavior, that when ex- Volume fractiong; (thatmeans, we restrict ourselves to com-
tended in one direction, they extend in all perpendicular direc- Positional information only). In this sense we introduce the
tions. Of course, most ceramic materials, including glasses, following basic assumptidr
exhibit Poisson ratios in the range 0.1-0.4 and for many pur- , _ (M, ), (6)
poses the approximate value of 0.2 or 0.3 will be areasonable
estimate in the absence of more precise information. Never-whereM; (i=0, 1, 2,..., n) are the phase moduli of all
theless, newer research in ceramic science (e.g. Ref. 10) takesonstituent phases aggithe volume fractions of thephases.
the possibility of negative Poisson ratios into account. The most general average value is the general power mean
(weighted by volume fraction’}

_ YN
3. Effective elastic moduli from the viewpoint of My = (Z M, ) , @)

micromechanics ) . ) .
with the summation extending over altonstituent phases.

Porous materials can be considered as a special case of N€ arithmetic mean\(= 1) corresponds to the Voigt bound
multiphase mixtures, composites or, more generally, ma- (Upper bound) of the shear and bulk moddly and Kv,
terials with microstructure (the subject of micromechan- "€Spectively, and the harmonic mean<(—1) corresponds
ics or composite theory). In micromechanics or composite {0 the Reuss bound (lower bound) of the elastic moblti

theory?-6 an effective stifiness tenset. can be defined via ~ Of course, in the case of two-phase materials one of the two
the linear constitutive equation volume fractions is redundant, and one can adopt the nota-

tion ¢1 =1 — ¢ and¢o = ¢. When, additionally, the second
(T) = Ce(E) () phase is the void phase (with zero elastic mogitsli= 0), and
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the elastic moduli of the solid matrix or skeleton phase are size distribution that enables space filling, featuring a fractal
denoted a3/; = My as usual, the Voigt bounds reduce to microstructure.

Note that in general the effective Poisson ratio does not
obey the Woigt and Reuss bounds and need not even lie be-
and the Reuss bounds degenerate to zero identically. tween that of the constituent phased;?*While in the case

The best possible bounds for the effective elastic mod- _of dense composites, in the absence of a be_tter alt_ernat|ve3 it
uli of macroscopically isotropic two-phase composites, given 'S 0ften recommended to calculate the effective Poisson ratio
just volume-fraction information, are the Hashin-Shtrikman ©f composites via the mixture rule (i.e. as an arithmetic mean
bounds (HS boundg}: cf. also Refs. 3-6, 12, 13. In the spe- ngghted by volume fractions), th!s simple remedy evidently
cial case of porous materials, where voids are one of the fails in the case_of porous materials. According to the self-
phases (with zero elastic modwh =0, K»=0), ¢ =6 is consstent and d|fferen_t|al approac_hes (see below)_the asymp-
the porosity and the elastic moduli of the solid matrix or totlcvalue,.towardsyvmch.th_e mgtnxg)rskeleton_ Poissonratio
skeleton phase are denotedas= Go, K1 = Ko as usual, the _tends for hlgh_porosmes, is invariably = 02 while accord_—

HS upper bounds reduce to ing to t.he Mori-Tanaka approaththe pre_dlcted asymptot!c
value lies somewhere between the matrix or skeleton Poisson

My = (1—¢)Mo (8)

Giis _1 15K + 20Go ) ratio vp and the value 0.2, and is for porous materials (with
Go - 9Ko + 8Go + (6Ko + 12Go)¢ ¢, spherical pores) given by the formula
1-5
Kis ) [3Ko+4Go], 10 V' =5ree (14
Ko 3Kop + 4Go 9+ 519

and the HS lower bounds degenerate to zero. HS bounds have

been theoretically derived for the shear moduluand the 4. Effective elastic moduli of porous materials: linear
bulk modulusK. An estimate for the corresponding HS bound approximations

for the tensile modulu& can be obtained via the standard

relationt?13 In the case of porous materials it is convenient to define a
relative elastic modulus as
Brs = ohsOHs )
3KHs+ GHs’ My = % (15)
0

In the very special case of porous materials with a matrix _ _ _
or skeleton Poisson ratio of 0.2¢(=0.2, corresponding to ~ WhereM is the effective elastic modulus (as before) afsl
3Ko = 4G)) it can be shown that the HS upper bounds reduce the elastic modulus of the matrix phase (in the case of porous

to materials of the matrix-inclusion type, i.e. porous materials
o o Kt 16 with closed pore_s) or else the _elast_ic modulus of the sqlid
ZHs _ ZHS _ HS _ ) (12) skeleton phase (in the case of bicontinuous porous materials,
Eo Go Ko 1+¢ e.g. open-pore cellular solids or foams). Using this notation

Note that for this case the HS upper bounds are iden- the Voigt bounds of the relative elastic moduiy of porous
tical to the Mori-Tanaka predictions for random materi- Materials decrease linearly with increasing porosity, exhibit-

als of matrix-inclusion type with spherical potésand to ing a slope of-1,
the Kuster—Tokéz relation'® cf. Refs. 17, 18. It has been M
. . . . v
shown recent}? that in the alumina—zirconia system the M = Mo 1-9, (16)

Mori—Tanaka prediction or Kuster—Toba relation is an ex-

cellent approximation to the HS upper bound for the ten- While the HS upper bounds are non-linearly decreasing, e.g.
sile modulus (error<0.1%) and for the shear modulus (er- With an initial tangent slope of-1.71 for a material with
ror < 2.6%), but not for the bulk modulus (error up to 14.3%). vo=0.2, cf. Eq(13). For very low porositiesf — 0), where

For the purpose of later reference we note that(Eg) can mutual interactions between the pores can be neglected (so-

be approximated by the fo||owing second-order po|yn0mia|: called dilute approximation) it is justified to assume a linear
dependence of the relative elastic moduli on the porosity,
+ + +
Eis _ Gns _ K

_Yhns _ BHs 4 2
To Go Xo 1-171¢ + 0.71p". (13) M, =1—[M]¢, (17)
Generally the microstructure corresponding to the HS boundswhere ] is the intrinsic elastic modulus defined as
is the so-called Hashin assembld§e&onsisting of polydis- M, —1
perse composite spheres containing concentric spherical in{M] = — ¢I)iLno . (18)

clusions. In the case of macroscopically isotropic porous ma-
terials the Hashin assemblage would be approximated by aNote the new sign convention in this definition, which is in
material consisting of hollow spheres with an infinitely wide contrast to our previous papéts?3and to common practice
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in suspension rheolog§but contributes much to clarity and ITélb_'e_l stio modul o1 different matrix Poi ;
simplification, cf. also Ref. 12 and our recent paper concern- "tfinsic elastic moduli, [k], [£] for different matrix Poisson ratiogy

ing thermal conductivity® vo (6] (K] [E]
Based on the exact classical solution of the spherical-—1.0 25 1 1
cavity problem (single spherical void embedded in an infinite —0-5 2368 1125 1539
elastic mediun?® explicit limit approximations to the prob- o1 g'ggg iggg iggg
lem of no_n—interactipg sphgrical cavities (i.e.. adilute system 2143 15 1929
of pores) in an elastic matrix have been obtained by Dévey 0.1 2077 1688 1973
and Mackenzi&8 For the relative shear modulas, the rela- 0.17 2024 1886 1994

tive bulk modulusk;, the relative tensile modulug and the 02 2 2 2
relative Poisson ratig these so-called dilute approximations 8‘32 igg;‘ ;;gg 288‘5‘
— i i 81829 :
(or Dewey—Mackenzie relations) 0.26 1947 2313 2006
_ 0.268667 1939 2371 2006
Gr=1—- qu, (19) 0.27 1938 2380 2006
7—"3vg 03 1.909 2625 2005
_ 0.31 1899 2724 2004
k=1 Sd=w) (20) 0.333333 1875 3 2
2(1—2v) 0.4 1.800 45 1.980
3(1 _ VO)(g + 5‘)0) 0.5 1667 00 1.917
E =1- (21)
2(7—5vp)
3(1-v3)(1-5 o : -
=1+ (2= vp)( vo) (22) Values of the intrinsic elastic moduli are listedTiable 1
2v0(7 — 5vg)

in dependence of the matrix or skeleton Poisson ragio
Nemat-Nasser and H8fave shown that these relations have Note that for the “normal” Poisson ratiog) between 0
been derived under the assumption of prescribed macrostrainand 0.5 the intrinsic tensile modulus remains very close to
When macrostress is prescribed the results are of thefdtm  the benchmark value of two (i.eE]~ 2), increasing from
1 [E]=1.929 (forvg=0) to a maximum value off] =2.006
= (23) (for v9=0.268667), followed by a decrease # £1.917
1+[M¢ (for vo=0.5). Due to this “anomalous” behavior df][the
which can be developed into a series expansiog iand ~ Vvalue [E] =2 is attained for two different values of (viz.
truncated after the first-order term (@) to give again the ~ vo=0.2 andvo = 1/3). The limiting values of the bulk modu-
dilute-limit expressions corresponding to E¢(E9)—(22) cf. lus and the tensile modulus for materials with a negative ma-
Eq.(17). Itis evident that the first-order coefficients (intrinsic  trix Poisson ratio (approaching = —1 in the extreme case)
elastic moduli) are all functions of the matrix Poisson ratio are [K]=[E]=1, corresponding to the Voigt bounds (values
vo. Note that, according to the dilute approximation, in the [M]<1 cannot occur). Curiously, the limiting value of the
special casep=0.2 the relative Poisson ratio of a porous intrinsic shear modulus forg=—1 materials is ¢]=2.5,
material with spherical poresis equal to unity, i.e. the effective obviously the counterpart of the Einstein valtiéor the in-
Poisson ratio remains unchanged with increasing porosity. trinsic shear viscosity occurring in suspension rheology, cf.
Note also that the so-called self-consistent approach, whichRef. 31. Note also that for the “typicalip values in the range
in a certain sense takes interactions into account, results in0.17 <vg < 0.33 the values of the intrinsic shear modulus are
very similar relations, except for the fact that the intrinsic always relatively close to the benchmark value of t@4 2
elastic moduli are functions of the effective Poisson ratio  (range 1.875 <(/] <2.024), while for the bulk modulus this
instead of the matrix or skeleton Poisson ratgp cf. Refs. is notthe case. Fop = 0.5 (corresponding to a completely in-
5, 6. Of course, in the special case of porous materials with compressible matrix) the intrinsic bulk modulus “collapses”,
spherical pores andy=0.2 both the dilute approximation i.e. a very small amount of pores would be extremely ef-
(in the dilute limit¢ — 0) and the self-consistent approach ficient (detrimental) in such a case. In other words, there
(principally intended for finitep) lead to the identical result ~ would be a singularity in th&—¢ diagram atp =0, where
the effective bulk modulus steeply falls down from the value
My =1-2¢, (24) of the matrix bulk moduluK to zero. In this connection
i.e. the intrinsic elastic modulus is exactly equal to two (i.e. We note that, due to the conditio] > 1, all linear rela-
[M]=2) for the case of spherical pores invg=0.2 mate-  tions (19)-(22) cf. Eq. (17), whether based on the dilute
rial. Note that deviations from this value might be attributed approximation or the self-consistent approach, predict a crit-
to deviations of the pore shape from sphericity (including a ical porosity¢c =[M]~* < 1, for which the effective elastic
topological transition from isolated to connected) but can as moduli become zero, i.e. the material looses integrity. In the

well be caused by deviations of the matrix or skeleton Poisson context of percolation theoryc can be interpreted in terms
ratio from the valuep=0.2. of a percolation threshof¢/32

My
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5. Effective elastic moduli of porous materials:
non-linear relations

criterion controlling the applicability of modulus—porosity
relations and that connectedness of pores does not automati-
cally exclude the use of any relation.

Experience shows that usually the porosity dependence of  Also for the shear modulus the Gibson—Ashby relation is
the effective elastic moduli is not linear. The simplest way of the general form
to allow for a non-linear dependence is the Coble—Kingery 2
approach® which is as followst334take the linear relation, ~ ©r = v(L=9), (28)

Eq (17), for the matl‘ix POiSSOI’] I’atio in queStion and a.dd a but according to Gibson and Ashgbshe prefacton/ (an ad_
quadratic term inp, so that justable parameter) ig= 3(1 +vg)/4 (as determined by their
My =1—[M] + ag?. (25) fitting <_:o||ected_ data), which has th_e unpl_easant consequence
that it is not unity for porous materials witly = 0.2 (but cu-

Then determine the value of the coefficierftom the condi- riously for materials withyg = 1/3, which is strange at best).
tion thatM; =0 at least fogp = 1 (which is necessary in order  Therefore, we conjecture that the prefacior 3(1 +vg)/4
not to violate the Voigt bound). Thus, in general one obtains proposed by Gibson and Ashbig slightly too low and pro-
the second-order polynomf&?3 pose to replace it by = 5(1 +v0)/6 for Eq.(28)to be in com-

. 2 plete accordance with the benchmark form, &7), at least
My =1=[Mg+(M] = 1" (26) in the case of porous materials witg=0.2. The principal
In the special case of porous materials with spherical poresproblem, however, remains that for all matrix or skeleton
andvg =0.2 this reduces 334 Poisson ratios other tham=0.2, the Gibson—-Ashby rela-

Mo — (1 — )2 57 tion for the shear modulus leads to the unphysical result that
r=(1-¢) @7) G, 1atp =0 (which defies the definition of relative modull).
This relation can be theoretically derived as a special case ofThis, of course, is more than only an aesthetical deficiency,
a more general power-law relation (the Archie relation men- since, strictly speaking, it renders the Gibson—Ashby relation

tioned below) and via the functional equation appro&cht for the shear modulus, E8), useless in the range of small
the same time it is identical with the prediction of the so- porosities, cfFig. 2

called differential approach for porous materials with spheri-  Irrespective of the matrix or skeleton Poisson ratio the
cal pores anag = 0.21718|nterestingly, the same result was Coble—Kingery relatior(27) may be expected to be a rela-
found for the tensile modulus by fitting a large amount of tively reasonable prediction for the tensile moduliigand
experimental data on real materials with the semi-empirical also for the shear modulus whenvg ~0.2), but certainly
Gibson—Ashby modé? for low-density open-pore cellular  not for the bulk modulu&. This is connected with a principal
solids (foams), cfFig. 1. We emphasize that the general form problem of Coble—Kingery relations: iff] > 2 the second-

of the Gibson—Ashby relations has been derived via dimen- order polynomials exhibit a minimum with negativg val-
sional arguments (using standard beam theory) for a cellularues at porosities <100%, which is a natural consequence of
model solid consisting of a network of open cubes, i.e. with- the parabolic form of these relations but is clearly nonsense
outany recourse to the assumptions of spherical pore shape ofrom the physical point of view. Obviously, this problem is
isolated-pore topology. This indicates that in many cases notharder in the case of the bulk modulus than with the other two
sphericity itself but only approximate isometry is the decisive

1 O Gibson-

= 084 Ashby
—_- o Gibson- o — Coble-
p— -
— 08 Ashby % Kingery
g4 — Coble- g oo a
> K .6
_8 ingery E o

© =]
A o :
c =2 =
2 044 g SN
02) o 02
=
©
© 0.2
x 9

0 T T T T
0.2 0.4 0.6 0.8
0 : - : : Porosity [1]
0.2 0.4 0.6 0.8
Porosity [1]

Fig. 2. Relative shear modulus of porous ceramics withk 0.2; the pre-

dictions of the Coble—Kingery relation (curve) do not coincide with those
Fig. 1. Relative tensile modulus of porous ceramics; the predictions of the of the Gibson—-Ashby approach (squares) when the prefactor is taken to be
Coble—Kingery relation (for closed isolated pores of spherical shape) coin- 3(1 +vg)/4 (corresponding to 0.9 in the casg=0.2), cf. Ref. 9, they do
cide with those of the Gibson—Ashby approach (for open connected pores coincide, however, when the prefactor is chosen to be 56)/6, which
of non-spherical shape). reduces to 1 in the casg=0.2.
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moduli, cf. Table 1 An entirely different relation has been above) it is in practice unnecessary to emphasize the condi-
proposed by Christens#tand Warren and Krayni for the tion vp=0.2 in this case, because for pores of spherical (or
bulk modulus of low-density cellular solids (i.e. for very high  only isometric) shape the intrinsic tensile modulus is always

porosities): very close to the benchmark value of two (i.E] f 2, range
1- 20 1.97 <[E]<2.01), even if the matrix or skeleton Poisson ra-
K, = 3 O(1 — ). (29) tio varies in the extremely wide range betweg 0.1 and

vo=0.4 (which covers practically the whole range of inter-
Evidently the linear form of this relation prohibits its use in  est for ceramic materials), cfable 1 Notwithstanding the
the range of low porosities. For example, in the case of porousproblems with the bulk modulus, in the case of the tensile
materials withvg=0.2 it predictsk; =0.2(1— ¢), which is  modulus the Coble—Kingery relations can yield a prediction
wrong of course (since it defies the definition of relative mod- of the porosity dependence that satisfies all basic criteria of
uli, see above). A possibility, though awkward, to overcome physical plausibility: it ensures that, =0 for ¢ =1 and it
this problem is to combine the Warren—Kraynik—Christensen does not violate the Hashin—Shtrikman upper bound. For ex-
(WKC) relation (which can be a realistic prediction in ample, in the case of porous materials wigt¥ 0.2 the initial
the high-porosity region) with the Coble-Kingery relation tangent slope is-2 and the curvature is 1, whereas the HS
(which can be realistic in the low-porosity region). To ensure upper bound is characterized by an initial tangent slope of
in any case positivity of th&, values the porositgx at the approximately—1.71 and a curvature of 0.71 in this case, cf.
crossover of the two curves (calculated by simply equating Eq. (13).
the Coble—Kingery relatiof26) for the bulk modulus and Following the key paper by Coble and King&fymany
the WKC relation(29) for the vg value in question) should  other relations have been proposed to describe the porosity
be used as the point of continuation, Efg. 3. Note again  dependence of the relative tensile modulus. In the sequel we
that for materials withyg>0.2 the Coble-Kingery relation  give a brief, but in a certain sense exhaustive, overview of
is useless for high porosities (due to the negative bulk mod- these. In order to clearly emphasize the similarities and dif-
uli predicted for porosities <1, which is nonsense from the ferences between them we adopt a unified notation, using the
physical point of view) while the WKC relation is generally  critical porositygc and the concept of intrinsic elastic moduli
useless for low porosities (due to the prediction of a relative [M] introduced above wherever feasible.
bulk modulus <1 for zero porosity, which is in contradiction It is understood, that in practice these parameters will
with the definition of relative bulk moduli). For example, for usually be treated as fit parameters to be determined from
materials with a matrix Poisson ratio af = 0.3, both curves  experimentally measured data a posteriori. This is particu-
meet at a porosity afx =0.534, cfFig. 3 For materialswith  |arly true for the critical porosityc, for which reliable and
higher matrix Poisson ratios the curves meet at lower porosi- sufficiently precise a priori estimates will hardly be avail-
ties and vice versa. Only in the (unrealistic) limiting cases of able for real material®2 Note that for porous materials there
incompressible materials witlp=0.5 and maximally aux-  exists no reliable benchmark value f¢e comparable to
etic materials withvo = —1 the Coble—Kingery predictionand  the value of approximately 0.64 (i.e. 64%) for the pack-
the WKC prediction coincide. ing density of monodisperse rigid spheres in random close
In the remaining part of this section let us restrict our- packed (rcp) arrangemetit3 Nevertheless, in exceptional
selves to the tensile modulus. For evident reasons (discussedases (i.e. for precisely defined model microstructures) there
exist estimates opc which seem to be realistic, obtained
via computer simulation¥ When these model materials are
considered to reflect the microstructure of any real material
sl N to a sufficient degree, then of course any of the following
N relations may be used for prediction purposes as well. In a
064 similar spirit (only replacing the virtual computer simulation
N by a real-world experiment), when a sufficient number of
0.4 1 > data has been measured for materials which have certain typ-
RN ical microstructural features in common (e.g. closed spheri-
021 NG cal pores), a master curve can be fitted to the measured data,
- el which can then be used to roughly predict the behavior of
e - similar materials.
02 . . . . Sprigg$? has suggested the use of a simple exponential

0 0.2 0.4 06 0.8 1 relation of the form
Porosity [1]

Relative bulk modulus [1]
/

Er = exp(-[E]¢). (30)

Fig. 3. Relative bulk modulus according to the Coble—Kingery relation for
vo=0 (thin solid curve),vp=0.2 (thin dashed curve) ang)=0.3 (thick . . . o
parabolic curve) and the Warren—Kraynik—Christensen (WKC) relation for Where the intrinsic tensile modulug][is principally a pa-

vo =0.3 (thick straight line). rameter to be determined by fitting experimentally measured
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data. Obviously, for small porositieg (- 0) Eq.(30)reduces of E; =0 at porosities lower than 100 % (i¢<1), one can

to Eq.(17). include an additional parameter in the modulus—porosity rela-
A derivation of the Spriggs relation via the so-called func- tion, the critical porosityc, which is able to take the possible

tional equation approach has been given recéhtlyseems occurrence of a percolation threshold into account. This re-

that Zimmermaf was the first to use a differential scheme sults in Mooney-type exponential relatiohs?2-4which are

approach to derive a special case of the Spriggs relation,of the form

which leads to the simple prediction _[El$
Er=exp| ——— | . 36
r p(l - ¢/¢c> 30

Of course, both the Spriggs relati@@0) and its special case, As before, under the assumption of spherical pores we can set
Eq. (31), suffer from a serious principal drawbad: is not [E] =2, which reduces the number of adjustable fit parameters

zero for¢ = 1. That means, the Spriggs relation necessarily by one.

violates the HS upper bound (and even the Voigt bound). Power-law relations represent another class of models,

For this reason Hasselméfibased on previous work by  principally different from the exponential relations just pre-

E; = exp(=2¢). (32)

Hashinl® suggested a relation which can be written as sented. The simplest relation of this kind is the Archie-type
relatior?
1-¢
T 1Y Cho’ (32) [E]
1+ Cno Er = (1—¢)lE] (37)

whereCy has to be determined principally by fitting exper-
imentally measured data. This relation is clearly non-linear
and monotonically decreasing, afid=0 is guaranteed for

¢ =1. Unfortunately, however, the inverse-e cannot be
interpreted as a critical porosity since in the lighit> —1/Cy
Eq.(32)diverges [E| — o0), i.e.—1/CH must always lie out- Er=(1-¢)° (38)

side of the interval 0 1. Thus, the interpretation 6f1/Cy

in terms of a critical porosity is principally inadmissible and Neither of these relations exhibits a compatibility problem at
there is no physical meaning left in the Hasselman relation ¢ =1 and, again, in the dilute limiiy(— 0) they reduce to
(32).1323 Thjs finding corresponds to the fact that fitting of Eq.(17). Moreover, as before with the exponential relations,
experimentally measured values invariably leads to positive in order to allow the possible occurrence of a percolation
values ofCH.*344 Nevertheless, a very special case of the threshold, i.eE, =0 for porositiesp < 1, the critical porosity
Hasselman relatio(82) can still be useful for predictive pur-  ¢¢ can be introduced as an additional parameter. This results
poses, viz. the cag®y = 1. Inthis case the Hasselman relation in aKrieger-type power-law relatio?f;31in elasticity context

a derivation of which via the functional equation approach
has been given recently.Of course, in the case of the tensile
modulus the Archie relation can be considered as a general-
ization of the Coble—Kingery relation

reduces to the Mori—Tanaka/Kuster—Tokselation, often called Phani—Niyogi relatidf
1-9¢ [Eloc
Bi=1ry CORNNY - <1_ qf;) . (39)

cf. Eg. (12), which is identical to the HS upper bound for
porous materials with spherical pores amd=0.2, as dis-
cussed above.

Only recently it has been recognized that also the modified
exponential relatiof?

As before, under the assumption of spherical pores we can
set [E] =2, which again reduces the number of adjustable fit
parameters by one. We would like to emphasize again that, al-
though sometimes considered to be purely empirical, all the
exponential and power-law relations mentioned above can
—[E]¢ be derived via a functional equation approdéf?>1What
1—¢ ) (34) makes them semi-empirical fit models in practice is only the

) ) o fact that, due to variations in pore shape (strong anisometry),
circumvents the aforementioned compatibility problem at e first-order coefficient (intrinsic tensile modulus) may not
¢=1.In Ref. 22 a derivation of this relation has been given pe rejiably known and that, due to the difficulty to assess and
via the functional equation approach. Trivially, in the case of qantify pore size distribution and connectivity, a priori esti-
porous materials with spherical pores the modified exponen-maes of the critical porosity are usually not available. Note,
tial leads to the prediction however, that Eq$31), (33), (35)and(38)are parameter-free

—2¢ predictive models, not fit equations.
Er= eXD(M) . (35) Recently, a new relation has been proposed by Pabst and
Gregorow?®

Note that, strictly speaking, this modified exponential model
results in a zero relative tensile modulus only inthe limiting g — (1 — [E]¢ + ((E] — 1)$?) - ‘f’/‘pC). (40)
case of 100% porosity. In order to allow for the possibility (1-9¢)

Er - exp(
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This relation has been found heuristically and reduces to Eq.

(17) in the dilute limit @ — 0, implying ¢ < ¢¢). Further-
more it ensures thadf, = 0 wheng = ¢¢, as required. Setting
[E] =2 this relation adopts the extremely simple form

B=-)(1- 7).

which seems to be the simplest thinkable relation allowing
for a percolation threshold (via the critical porosgty). In

the absence of a percolation threshold g€~ 1) it reduces

to the Coble—Kingery relatio(38), as required. We recall
that [E] =2 is always a reasonable approximation for porous
materials with isometric pores, independently of the precise
value of the matrix or skeleton Poisson raigocf. Table land

(41)

the discussion above. Of course, unless the critical porosity

¢c is known a priori (a rather exceptional case) and an ap-
plication of Eq.(41) for predictive purposes is intended, this

discussion is of more or less philosophical character anyway.

As long as Eq(41) is used as a fit model, its application to
cases where the assumptidt] £ 2 is (approximately) jus-
tified may be called semi-empirical (because its form is a
special case of E§40)), while its application to cases where
the assumptionH] = 2 is not justified must be considered as
purely empirical. In any case, contrary to the situation with
the parameter-1/Cy occurring in the Hasselman relation
(32), cf. the discussion above, there are no principal objec-
tions against the interpretation @t in terms of a critical
porosity. In other words, even if taken as a purely empiri-
cal fit equation, our relation remains principally meaningful
from the physical point of view.

We emphasize that, except for the Spriggs relgd@and
its special case, Eq31), none of the relations cited above

necessarily violates the HS upper bound. This is the case,

however, e.g. for the model derived for cubic pores by Ishai
and Cohefy

Er=1-¢3. (42)
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cave faces) cannot be expected to be responsible for measur-
able deviations in the intrinsic elastic moduli. Their intrinsic
tensile modulus will still be close to the benchmark value
([(E]~2).

In concluding this section we would like to emphasize that
of course all relations presented here for the relatiueile
modulus can be used forring experimentally measured data
for any kind of elastic modulus (and many other properties as
well). Also in these cases it may under certain circumstances
be legitimate to interpret the values obtained for the intrinsic
moduli by fitting in terms of a pore shape influence. It has
to be kept in mind, however, that the intrinsic value of 2 in
the case of porous materials with spherical or isometric pores
is specific only to the tensile modulus (whefd f 2 exactly
for vg=0.2 andvp=1/3 and E] ~ 2 for all matrix Poisson
ratios 0 <vp<0.5). It can be a good approximation for the
shear modulus as well (for the matrix or skeleton Poisson ra-
tios commonly encountered in practice), but certainly not for
the bulk modulus or other properties. That means, only for
the tensile modulus (and approximately for the shear modu-
lus) the parameter-free special relatiqB4), (35) and(38)
given above (specialized by setting] E 2), including the
Mori—Tanaka/Kuster—Tok relation(33), can be expected
to provide useful predictions. E@31), of course, is prin-
cipally disqualified for a completely different reason (viz.
because it violates the HS upper bound and even the Voigt
bound, cf. the discussion above), while the Kuster—@aks
relation(33) represents no improvement over the HS upper
bound (because it is identical to it). Similarly, we recall that
the Pabst—Gregorawelation(40) adopts its elegant and sim-
ple form(41)only in the casef] = 2. This relation, however,
is not per se meant to be a predictive model (since the crit-
ical porosity¢c can usually not be expected to be known a
priori), but a fit equation. As such, of course, it can be used
quite universally.

We believe that the classification given in this section is
rational and exhaustive, at least for approximately isometric
pores, in the sense that all relations not mentioned in this

Needless to say, the use of such a model should be avoidedsection have to be considered with great scepticism. This must

Boccaccini et af® have modified this relation in a way that

be said, e.g. of the sophisticated relation derived by Nietden,

the HS upper bound need not be violated any more. The prac-a special case of which is the relation of Ramakrishnan and

tical significance of their relation, however, concerns strongly

Arunachalar® (which is similar to the Hasselman relation

anisometric pores, which are beyond the scope of this paperand suffers from the same drawbacks) and of the remarkable

In principle, it can be attempted to interpret deviations of
the intrinsic tensile modulus determined by fitting with any
of the relations above from the benchmark valBg{2 in

relation proposed by Boccaccini and FdrFortunately, at
least, all of these relations contain the Coble—Kingery relation
(38) as a special case.

terms of an influence of pore shape. This is possible because

usually the deviations irH]] caused by a variation of the ma-
trix or skeleton Poisson ratio are in practice negligible. Apart

6. Case study: effective tensile moduli of porous

from the obvious advice that such an interpretation should be alumina, zirconia, silicon carbide and silicon nitride

based on a reliable determination &f [e.g. by comparing
the coincidence of fitting results using several of the relations
above) it should be keptin mind, that significant deviations in

[E] require a considerable degree of pore anisometry (elon-

gation or flattening). Non-spherical pores which are more or
less isometric (e.g. of polyhedral shape or pores with con-

As a practical example of the application of some of
the above relations we consider aluminax®4), zirconia
(Zr0Oy), silicon carbide (SiC) and silicon nitride @Biy), all
prepared with corn-starch (median size approximatejyri4
in all cases) as a pore-forming agent and all with a compa-
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Table 2 1
Elastic properties of almost pore-free (densely sintered), macroscopically 0.9 1
isotropic polycrystalline alumina, zirconia, silicon carbide and silicon nitride = 3
Elastic property AIO; Zro, Sic SiNy é 0.71
Eo 400 210 420 320 g oo
Go 163 80 179 126 g 0.5 1
Ko 247 184 212 232 5 0.4
vo 0.23 031 017 027 2 o3
0.1
. .. . . 0 T T T T
rable microstructure (matrix-inclusion-based microstructure 0 02 0.4 06 08 1
with the possibility of pore contact or overlap). The (experi- Porosity [1]

mentally measured) data for alumina and zirconia are taken
from Refs. 43, 44 the data for silicon carbide from Ref. 52 Fi'g. 4. HS.upper pounds.for the relative shegr modulus of porous ceramics
and for silicon nitride from Ref. 53 to which the reader should ‘é"l:t:\]l;pgi%rfc/f\igoosr ;Snodm;;,zi b éggﬁ:;;‘_)"d curve: Zrwer dashed
refer for a specification of the chemical and phase composi-
tion as well as processing details. The elastic properties of the
pore-free, densely sintered polycrystalline ceramics (matrix d
material), which are necessary input data for the calculation
of relative moduli, have been extracted from literature values
determined at room temperature 23 °C) for samples with
a total porosity <3% and are listed irable 2 For alumina
and zirconia these input data are taken from the critical com-
parison in Ref54, for silicon carbide and silicon nitride they
are the result of an extensive literature research, partly, but
not exclusively, based on the electronic NIST data ba3es.
Introducing artificial porosity via pore-forming agents
(e.g. starch) is a common way to produce ceramics with

controlled .porosity, characterized b_y a pore size significa_ntly required for macroscopically isotropic ceramics. Evidently,
larger (pr|cal!y 1-2 ordgrs ofmagnltude) than_ the grain size. the special case of the Spriggs relation, B1), is useless
Essentially this processing technique results in porous mate- . prediction, because it violates the HS upper bound.

rials \.Ni.th large void inclusions, i.e. large c!osed pores, butthe The Coble—Kingery relation has evidently a better score: at
possibility of pore contact or even a certain degree of overlap leastit does notviolate the HS upper bound and itis clearly an

C?nnot be t;':\bdssltétt_aly ef>.<cluded.. Lgrge porltles (typlcarl:jly tens improvement over the latter when a rough estimate is needed.
of wm) embedded in a fine-grained (typically aroungir) However, when all data are fitted with one master curve us-

matrix of host material, will not exhibit significant shrink- ing the Archie-type relatio37) the resulting intrinsic ten-

age during firing (even at temperatures and in time schedulesSiIe modulus obtained from fitting i = 2.61, cf. Table 3

where the matrix becomes densely sintered, i.e. attains almosrSirnilarly when the Phani-Niyogi relatiof89) is used for
theoretical density) and will remain as void inclusions in the fitting thé intrinsic tensile modulus i]=2.41 (the expo-
final ceramic. These will then determine the effective elastic '

properties. For such materials it is possible to consider the
matrix (dense host material) as a homogenized medium and
to invoke the Voigt bounds and the upper Hashin—Shtrikman
bounds in their simple form for two-phase materials.

Figs. 4 and 5how the HS upper bounds of the relative
shear and bulk moduli, respectively, of SiC and ZrDhese
two ceramics exhibit the most extreme matrix Poisson ra-
tios vg of the four ceramics investigated, vizy=0.17 (SiC)
andvp=0.31 (ZrQ), i.e. Al,O3 and SgNg4 are always inter- 02
mediate between these two extremes. Note that for the shear |
modulus Fig. 4) the HS upper bound is always slightly lower 0 : , , ,
for the material with smallerg, whereas for the bulk mod- 0 02 04 06 08 L
ulus Fig. 5) it is much higher for the material with smaller Porosity [1]
vo. The influence ofy is practically negligible for the tensile Fig. 5. HS upper bounds for the relative bulk modulus of porous ceramics
modulus and, therefore, the HS upper bound can be drawn as;ith spherical or isometric pores (upper dashed curve: SiC; lower solid
one single line for all ceramics, corresponding to E3). curve: ZrQ, Al,Oz and SiNy are in between).

Fig. 6 shows the porosity dependence of tensile moduli
atareported for alumirf&;**zirconia:*®#silicon carbid&?
and silicon nitride>® In spite of the relatively large scatter of
the values a common trend exhibited by all these ceramics
can be recognized. This is indicative of the same or at least
a very similar type of microstructure. Although, due to its
organic character, the pore-forming agent (starch) is burnt out
and vanishes completely during heating up to the sintering
temperature of the ceramics, the pores will remain isometric
and the microstructure will be essentially matrix-inclusion-
based, permitting only a small degree of pore overlap. All
values shown irFig. 6 obey the HS upper boun@3), as

0.8 4
0.7 4
0.6 4
0.5 4
0.4 4
0.3 4

Relative bulk modulus [1]
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1 quantitative way the good quality of the prediction via the
094 modified exponential relatiof85).
% 081 Ny, In order to obtain a master curve characterizing as
g 071 ? \:\\\ precisely as possible the general trend of the porosity-
g 091 Ny dependence of the elastic moduli, which is common to all
= 051 '\\\ . materials of a given type of microstructure (irrespective of
% 041 ’ \ the chemical or phase composition of the matrix or skeleton
s %% phase), it is generally advisable to use the new relgddn
g 2 T for fitting. In the present case we obtain
0.1 g
0 . i~
0 0.2 0.4 06 08 1

_ ¢
Er={1-9) (1 B 0.684) '

Fig. 6. Relative tensile modulus of porous ceramics prepared with corn- This finding is physically reasonable and visual inspection
starch as a pore-forming agent (measured values and predictions); HS upshows that it provides an excellent description of the mea-
per bound (thin s_olid line Wit_h crosses), expgrimentally measured values g red data, cfFig. 6. Moreover, the value determined here
(squares: AlOs, diamonds: SIC, cf. Ref. 52, triangles:Bi, cf. Ref. 53, for the critical porosity falls well within the approximate
circles: ZrQ), predictions for spherical pores (thin dotted curve: Spriggs re- . . .
lation (31); thin dashed curve: Coble—Kingery relatig@8), thin solid curve: range¢c =0.74+ 0.09, representing the arithmetic average
modified exponential relatiog85)) and fitted master curve (thick solidcurve ~ (and standard deviation) of critical porosity values deter-
obtained by fitting with our new relation, EG41), ¢c =0.684). mined for materials with similar microstructure in previous
work #344We emphasize that these critical porosities have
been obtained by extrapolation of real-world experiments on
cf. Table 3. This indicates, that when the exponent 2 in the real materials. Percolation theory has to clarify the question
Coble—Kingery relatiorf38) is allowed to vary freely (as an ~ whetherthese results can in any way be reconciled with simu-
adjustable fit parameter), the fitted curve corresponds to alations (virtual experiments) performed with model materials
value significantly larger than 2. This is clear quantitative Of known and well characterized microstructués.
evidence (apart from the obvious qualitative findings of vi-
sual inspection oFig. 6) of the fact that the Coble—Kingery
prediction is not completely satisfactory in this case.

By far the best prediction is achieved with the modified
exponential relatior(35). We emphasize that the latter is, The theoretical framework of elastic properties has been
similar to the HS upper bound and the Coble—Kingery pre- recalled from the viewpoint of rational mechanics (con-
diction, an unbiased a priori prediction, without the need for tinuum theory) and micromechanics (composite theory).
fitting. It is solely based on the assumption that the pores Based on the concept of intrinsic elastic moduli a ratio-
are spherical. In this case, if the intrinsic tensile modulus is nal classification and a relatively exhaustive overview of
allowed to vary, i.e. if we considef] as an adjustable pa- modulus—porosity relations has been given, which includes
rameter to be determined by fitting according to E2g), exponential and power-law expressions as well as several
cf. Table 3 the result is E]=2.20, which is a value fairly  other relations, among them the Hasselman relation and a re-
close to E]=2. Similarly, when a critical volume fractionis  |ation with percolation threshold (critical porosity) recently
introduced as a fit parameter, i.e. the Mooney-type relation proposed by Pabst and Gregoady
(36) is used with E]=2, this critical volume fraction turns It has been shown that no physical meaning can be ascribed
out to begc =1.146, i.egpc~ 1. Both findings confirmina  to the adjustable fit parameter occurring in the Hasselman re-

lation(32). Only a very special case of the Hasselman relation
Table 3 (viz. the one for which the fit parameter degenerates to unity)
Fit parameters determined for the master curve of the porosity dependenceiS useful for the porosity dependence of the tensile modulus,

of the tensile modulus of four types of ceramics (alumina, zirconia, silicon viz. Eq.(33). In this case the Hasselman relation corresponds
carbide, silicon nitride) with matrix-inclusion type microstructure prepared g the HS upper bound.
with corn-starch as a pore-forming agent

Porosity [1]

nent [E]¢c being 1.45 and the critical porosityc =0.725,

7. Discussion and conclusions

It has been shown that, contrary to the Hasselman relation

Fit model El  ¢c (32), the parametepc occurring in Eq(41) can always be
Modified exponential Er = exp( ‘fﬂ)‘”) 220 - interpreted as a critical porosity. It corresponds to the perco-
. _ lation threshold, at which a porous material looses integrity
Mooney-type with F]=2  E, = exp (=22 - 1.146 L . . o
_ e s ' p(l‘z/"’C) and/or attains zero elastic moduli. §¢1) is simpler than
Archie-type Er=(1-¢)¥ 261 - the Phani—Niyogi relatio(39) (which also allows for a crit-
Phani-Niyogi Er = (1 — ¢/¢c)lEloc 241 0725 ical porosity or percolation threshold), but also contains the
Pabst_Gregordy Em () d/dc) - . Coble—Kingery relatior§38) as a special case, in contrast to

the Hasselman relatiqi32).
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The simple and elegant second-order modulus—propertywhich renders the Gibson—Ashby relation more acceptable
relations of the Coble—Kingery type, H@6), including(38), from the theoretical point of view as an approximation for
which have been unduly ignored, or incorrectly cited, in most the shear modulus, corresponds to a change in the prefactor
relevant papers and textbooks, have been recalled and theiby 10%. Such a small change may well be within the un-
use is advocated for the porosity dependence of the tensilecertainty of Gibson and Ashby’s master curve fit or within
and shear moduli. In spite of their simplistic derivation and the natural scatter caused by the relative arbitrariness of sam-
the unphysical artifacts they produce when the intrinsic elas- pling (data selection). To make things clear, we think that
tic moduli are (significantly) larger than two, i.ed]>2, it Gibson and Ashby’s value for this prefactor, although ob-
seems that the Coble—Kingery relations are relatively soundtained on the basis of fitting a large amount of measured and
from the viewpoint of micromechanics (because they do not published data, was presumably also guided by the attempt
violate the Hashin—Shtrikman upper bounds), in contrast, to achieve agreement with E@7) for vo=1/3. As shown in
e.g. to the frequently used Spriggs relati@®), including the present paper, however, the latter is unjustified on theoret-

its special case, E§31), and the Ishai—Cohen relati¢h2). ical grounds, because the intrinsic shear modulusgerl/3
Needless to say, the use of the latter two should be generallyis not [G] =2 but [G] =1.875, which prohibits to write the
avoided. Coble—Kingery relation for this case in the binomial form of

Moreover, although the (non-linear) Coble—Kingery re- Eq.(27).
lations are based on the (linear) Dewey—Mackenzie rela- As a paradigmatic example, selected relations have been
tions (19)—(22) which have been rigorously derived only applied to describe the porosity dependence of the relative
for a dilute (i.e. non-interacting) system { 0) of isolated tensile modulus for alumina, zirconia, silicon nitride and sil-
(i.e. closed and non-overlapping) pores of spherical shape, iticon carbide prepared with corn-starch as a pore-forming
has been shown that the principally different, semi-empirical agent. lthasbecome apparentthat, irrespective of the process-
Gibson—Ashby approach, which is based solely on dimen- ing details, porous ceramics with this type of microstructure
sional arguments for an idealized structure consisting of a (essentially matrix-inclusion-based) follow a common trend,
space-filling arrangement of cubic skeletons (modeling an which is dominant in spite of experimental scatter. Fitting
open-cell cellular solid or foam) supplemented by a humer- the master curve with the new relati¢fil) yields a critical
ical value obtained from a master fit of a large amount of porosity of¢pc =0.684. In practice this value is roughly in-
data measured for low-density & 1) cellular solids, leads  dicative of the maximum porosity that can be achieved by the
to exactly same result for the porosity dependence of the processing method applied (here, e.g. using starch as a pore-
effective tensile modulus. This fact, together with the well- forming agent). Of course it may vary for different process-
known finding that exactly the same result is also obtained ing techniques, but it should be independent of the material
in micromechanics using the differential or functional equa- in question.
tion approach, greatly enhances the confidence in(ER). It has been pointed out that for materials with the type of
as a practical benchmark relation for the whole range of microstructure investigated here, the modified exponential
porosities, fromp =0 to ¢ = 1, without necessary recourse relation(35), derived via a functional equation appro&éh,
to the special assumption of spherical pore shape (as longprovides a satisfactory prediction of the actually measured
as they are not anisometric), irrespective of pore topology porosity dependence. Thus, for the microstructures result-
(isolation or connectedness of pores) and (approximately)ing from starch burnout the prediction via this new rela-
independent of the matrix or skeleton Poisson ratio (at leasttion is far better than the Coble—Kingery prediction, Eqg.
in the range 0.1 €y <0.4). Being the only available power- (38), and rather close to the master curve obtained by
law type benchmark relation of this kind, all other reasonable fitting with Eq. (41). This remarkable fact, never stated
non-exponential relations, e.g. those proposed for (strongly)in the literature before, seems to be rooted in the differ-
anisometric pores, should be required to reduce t¢gE)in ent model assumptions that led to the derivation of Egs.
the special case of isometric pores. Note, however, that Eq.(35) and (38), respectively, using the functional equation
(38) cannot be considered as a rigorous upper bound, since approactf122:31
e.g. the aforementioned Hashin assemblagen principally Note that, although visual inspection confirms the qual-
exceed it (even if only slightly). ity of the prediction(35) and the proximity to the master

We emphasize that in the special case of materials with acurve fitted via Eq(41), the modified exponential relation
matrix or skeleton Poisson ratio of =0.2 the same type of  (35) does not predict a critical porosity. As a consequence
relation, Eq(27), can be considered as a benchmark relation of its form it remains principally finite even for very high
for all three elastic moduliX, G andK). For this reason we  porosities ¢ — 1). This does not mean, however, that Eq.
have proposed to correct the prefagtan the Gibson—Ashby  (35)would be suitable for predicting the porosity dependence
relation for the shear modulus frop= 3(1 +vo)/4 (originally of the tensile moduli of low-density cellular materials with a
proposed by Gibson and Ashby) 6= 5(1 +vg)/6, which is bicontinuous microstructure (i.e. solid networks or open-cell
the appropriate expression to ensure exact agreement witffoams). When measured data are lacking in such a case, the
Eqg. (27) in the case of materials with a matrix or skeleton Coble—Kingery relatior{38) is clearly the better choice for
Poisson ratio obg=0.2, as required. This small correction, approximate modulus prediction.
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